Resources Research

Making local sense of food, urban growth, population and energy

Posts Tagged ‘science

The ideologies about knowledge

leave a comment »

RG_TERI_terragreen_201605

The few paragraphs that follow are taken from my recent article for the TERI (The Energy and Resources Institute) magazine, Terragreen. Published in the 2016 May issue, the article links what we often call traditional knowledge with the ways in which we understand ecology and the ways in which we are defining ‘sustainable development’.

quotes-blueSustainable development has today become a commonly used term, yet it describes a concept that is still being considered by different kinds of societies, by each in a manner of its choosing. This has happened because while historically how societies grew to be ‘developed’ was a process that took a variety of pathways, today the prescribed pathway to the ‘modern’ scarcely changes from one country to another.

Hence culturally what these societies have considered as being ‘sustainable’ behaviour – each according to its ecological context – is being replaced by a prescribed template in which interpretations are discouraged. Such a regime of prescription has led only to the obscuring of the many different kinds of needs felt by communities that desire a ‘development’ that makes cultural sense, but also of the kinds of knowledge which will allow that ‘development’ to be sustainable.

RG_terragreen_7_sm_20160602

Click for image pdf (600kb) of article

Some of this knowledge we can readily see. To employ labels whose origin is western, these streams of knowledge and practice are called traditional knowledge, intangible cultural heritage, indigenous wisdom, folk traditions, or indigenous and local knowledge. These labels help serve as gateways to understand both the ideas, ‘development’ and ‘sustainable’. It is well that they do for today, very much more conspicuously than 20 years earlier, there is a concern for declining biodiversity, about the pace and direction of global environmental change, a concern over the unsustainable human impact on the biosphere and the diminishing of community identity.

There is widespread acknowledgement of the urgency of the situation – this is perceived across cultures, geographical scales (that is, from local units such as a village, to national governments), and knowledge systems (and this includes both formal and non-formal ways of recognising these systems). The need for such a new dialogue on the situation is expressed in several global science-policy initiatives, both older and recent, such as the Convention for Biological Diversity (CBD) which is now 22 years old, and the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), whose first authoritative reports became available in 2015.

Development whose sustainability is defined locally and implemented locally means that the ‘investment’, ‘technology’ and ‘innovation’ (terms that have become popular to describe development efforts) comes from the people themselves. Many diverse agencies at this level – civil society, youth groups, vocational networks, small philanthropies – assist such development and provide the capacities needed. This is the level at which the greatest reliance on cultural approaches takes place, endogenously.

In domains such as traditional medicine, forestry, the conservation of biodiversity, the protection of wetlands, it is practitioners of intangible cultural heritage and bearers of traditional knowledge, together with the communities to which they belong, who observe and interpret phenomena at scales much finer than formal scientists are familiar with. Besides, they possess the ability to draw upon considerable temporal depth in their observations. For the scientific world, such observations are invaluable contributions that advance our knowledge about climate change. For the local world, indigenous knowledge and cultural practices are the means with which the effects of climate change are negotiated so that livelihoods are maintained, ritual and cultivation continue, and survival remains meaningful.

Of Elsevier, Monsanto and the surge for Seralini

leave a comment »

Support for the team of scientists led by Giles-Eric Séralini, a professor of molecular biology at Caen University (France), is growing quickly every day following the appalling (but unsurprising) turfing out of the famous Seralini study from the journal Food and Chemical Toxicology.

The industrial combines that work with governments, multilateral lending agencies, corrupt politicians, venal bankers and (to add to this merry list) scrupleless publishers have been hard at work in the last week. Through their public relations peons, they have swamped the world’s newspapers and television channels with reports claiming that the ‘retraction’ by the Elsevier journal, Food and Chemical Toxicology, of the Seralini study is a step forward for science and a step closer to helping end hunger.

The level of public awareness about the dangers of GM food and seed needs independent and credible science as a partner. Here, anti-GM protesters in Bangalore, Karnataka, India

The level of public awareness about the dangers of GM food and seed needs independent and credible science as a partner. Here, anti-GM protesters in Bangalore, Karnataka, India

This is the most virulently cynical twisting of the truth in a long and gory history of truth being twisted in order that the food and cultivation options of millions remain, not a choice of options but the diktat of the corporations (GM seed, poison pesticide, poison fertiliser).

What did the Seralini group find? Their toxicological study on GM maize and Roundup herbicide involving 200 rats was done over two years, and found an alarming increase in early death, large tumours including cancers, and diseases of the liver and kidney. The study, published in 2012 by this journal (which has condemned Elsevier to lasting infamy and driven a spike through the cankerous heart of the sponsored scientific journals ancillary industry) was not the first to show the effects of Monsanto’s packaged poison (farmers in every country know the truth), nor was it the only one to show adverse health impacts from GM feed or Roundup herbicide.

What then? At the end of 2013 November (about a fortnight ago) PRNewswire reported ‘Elsevier announces article retraction from journal Food and Chemical Toxicology’ (2013 November 28).

This immediately set off the mobilisation amongst the hundreds, then thousands, who had been following the course of the Seralini study and the repugnant reactions to it by the GM food and seed industry (Monsanto, Bayer, Dow, DuPont, Syngenta, BASF and their subsidiaries and national partners).

In an open letter to the editor of Food and Chemical Toxicology the European Network of Scientists for Social and Environmental Responsibility (ENSSER) bluntly said that the journal’s retraction of the Seralini team’s paper “is a travesty of science and looks like a bow to industry”. ENSSER reminded the worldwide audience that the Séralini group had found severe toxic effects (including liver congestions and necrosis and kidney nephropathies), increased tumor rates and higher mortality in rats fed Monsanto’s genetically modified NK603 maize and/or the associated herbicide Roundup. There it was, clear as day.

ENSSER went on: “Even more worrying than the lack of good grounds for the retraction is the fact that the journal’s editor-in-chief has not revealed who the reviewers were who helped him to come to the conclusion that the paper should be retracted; nor has he revealed the criteria and methodology of their reevaluation, which overruled the earlier conclusion of the original peer-review which supported publication. In a case like this, where many of those who denounced the study have long-standing, well-documented links to the GM industry and, therefore, a clear interest in having the results of the study discredited, such lack of transparency about how this potential decision was reached is inexcusable, unscientific and unacceptable. It raises the suspicion that the retraction is a favour to the interested industry, notably Monsanto.”

Elsevier is attempting to erase from the public record results that are potentially of very great importance for public health. The support for the Seralini study and studies like it will ensure that does not happen.

Elsevier is attempting to erase from the public record results that are potentially of very great importance for public health. The support for the Seralini study and studies like it will ensure that does not happen.

The Elsevier journal, coming under baleful condemnation from all quarters for its cowardly act, essayed a response meant to be collective but which mired itself in administrative cover-thy-bum murkiness and addressed none of the substantial matters raised by the open letters which are gaining supported every day. Unable to see the writing on the crumbing frankenfood wall, The Economist, that gormless right-wing leaflet despised by fish’n’chips vendors, stumbled in with an editorial titled ‘Fields of beaten gold: Greens say climate-change deniers are unscientific and dangerous. So are greens who oppose GM crops’.

With the retraction of the Seralini team paper by the Elsevier journal, the Economist’s leader gibbered feverishly, “There is now no serious scientific evidence that GM crops do any harm to the health of human beings. There is plenty of evidence, though, that they benefit the health of the planet. One of the biggest challenges facing mankind is to feed the 9 billion-10 billion people who will be alive and (hopefully) richer in 2050. This will require doubling food production on roughly the same area of land, using less water and fewer chemicals. It will also mean making food crops more resistant to the droughts and floods that seem likely if climate change is a bad as scientists fear.” As you can see, this specious and laughably binary argument is the kind that the CGIAR and its thought-control institutions (such as the International Food Policy Research Institute) have sloshed through governments in the South for the last decade, mostly successfully.

But the world’s scientists cannot be bought and cannot be bullied en masse. The Institute of Science in Society wrote and circulated an open letter on the retraction and also included in it a “Pledge to Boycott Elsevier” – this letter has now been signed by 454 scientists and 813 non-scientists from 56 different countries!

The ISIS letter to the feckless Elsevier journal has said, very firmly: “Your decision to retract the paper is in clear violation of the international ethical norms as laid down by the Committee on Publication Ethics (COPE), of which FCT is a member. According to COPE, the only grounds for retraction are (1) clear evidence that the findings are unreliable due to misconduct or honest error, (2) plagiarism or redundant publication, or (3) unethical research. You have already acknowledged that the paper of Séralini et al (2012) contains none of those faults.”

Moreover, the ISIS open letter has addressed in one fiery sweep the GM food and seed industry and their craven partners in governments, the journal publishers and their smarmy influence brokers alike: “This arbitrary, groundless retraction of a published, thoroughly peer-reviewed paper is without precedent in the history of scientific publishing, and raises grave concerns over the integrity and impartiality of science.”

Elsevier is already notorious for having published six fake journals sponsored by unnamed pharmaceutical companies made to look like peer reviewed medical journals; this particular journal, Food and Chemical Toxicology, had recently appointed ex-Monsanto employee Richard Goodman to the newly created post of associate editor for biotechnology; Elsevier remains the target of a still-current boycott initiated by eminent mathematician, Sir Tim Gowers, as a protest by academics against the business practices of Elsevier, especially the high prices it charges for journals and books; and this now thoroughly invalidated journal had also retracted another study finding potentially harmful effects from GMOs.

Scientists’ statement deflates the bogus idea of ‘safe’ GM

with one comment

ENSSER_GMO_statement_10More scientists, physicians and legal experts have signed the group statement issued by the European Network of Scientists for Social and Environmental Responsibility (ENSSER) on the safety of genetically modified organisms (GMOs). The number of initial signatories to the statement, titled ‘No scientific consensus on GMO safety’, was almost 100 on the day it was released, 2013 October 21, and has more than doubled since.

The ENSSER group has reminded us that crop genetic engineering is dominated not by ecological experts but by molecular biologists: “Many are not knowledgeable about ecological risks and – more importantly – they fail to recognise the limitations of their expertise.”

ENSSER_GMO_statement_13Regarding the environmental risk of GM crops, ENSSER has said, the negative effects now documented empirically have been predicted since about 25 years.

For instance, while naturally occurring Bt toxins come in a diversity of variants, GM crops necessarily have to choose one Bt toxin to be transferred, significantly enhancing the probability of resistance development. Such effects are analysed by community ecology researchers and not visible on the genetic level.

“So it is a shame that, more than 20 years after the international academic societies of ecologists and molecular biologists agreed on the complementarity of their competences, and the necessity to assess ecosystem impacts in a systemic fashion, today’s molecular biologists still do neither recognise nor respect the limits of their competencies (not to speak about the influence of funding). Ignoring one’s own blind spots is what can turn science into a social risk.”

ENSSER_GMO_statement_11Those who have signed the statement “strongly reject claims by GM seed developers and some scientists, commentators, and journalists that there is a ‘scientific consensus’ on GMO safety and that the debate on this topic is ‘over’.”

The signatories have said they “feel compelled to issue this statement because the claimed consensus on GMO safety does not exist. The claim that it does exist is misleading and misrepresents the currently available scientific evidence and the broad diversity of opinion among scientists on this issue. Moreover, the claim encourages a climate of complacency that could lead to a lack of regulatory and scientific rigour and appropriate caution, potentially endangering the health of humans, animals, and the environment”.

ENSSER_GMO_statement_16ENSSER members and non-members alike who have signed the statement have collectively said that science and society do not proceed on the basis of a constructed consensus, as current knowledge is always open to well-founded challenge and disagreement. They endorse the need for further independent scientific inquiry and informed public discussion on GM product safety and urge GM proponents to do the same.

Regarding the safety of GM crops and foods for human and animal health, a comprehensive review of animal feeding studies of GM crops found that most studies concluding that GM foods were as safe and nutritious as those obtained by conventional breeding were “performed by biotechnology companies or associates, which are also responsible [for] commercialising these GM plants”.

ENSSER_GMO_statement_12It is often claimed that “trillions of GM meals” have been eaten in the US with no ill effects. However, no epidemiological studies in human populations have been carried out to establish whether there are any health effects associated with GM food consumption. As GM foods are not labelled in North America, a major producer and consumer of GM crops, it is scientifically impossible to trace, let alone study, patterns of consumption and their impacts. Therefore, claims that GM foods are safe for human health based on the experience of North American populations have no scientific basis.

ENSSER_GMO_statement_15A report by the British Medical Association concluded that with regard to the long-term effects of GM foods on human health and the environment, “many unanswered questions remain” and that “safety concerns cannot, as yet, be dismissed completely on the basis of information currently available”. The report called for more research, especially on potential impacts on human health and the environment.

ENSSER_GMO_statement_14Likewise, a statement by the American Medical Association’s Council on Science and Public Health acknowledged “a small potential for adverse events … due mainly to horizontal gene transfer, allergenicity, and toxicity” and recommended that the current voluntary notification procedure practised in the US prior to market release of GM crops be made mandatory. The ENSSER group has said that even a “small potential for adverse events” may turn out to be significant, given the widespread exposure of human and animal populations to GM crops.

What’s the ‘intensity’ of agri research nowadays?

with one comment

Nice infographic, but where are the prices of rice and wheat?

What do countries spend of agricultural research and development? How much is the ‘intensity’ of their agri-R&D spend – whether measured by agriculture domestic product or by ‘agriculturally active population’ (which I’m taking to mean farmers)? How much of this spending comes from taxpayers’ money and how much from the profits of the food companies and food retail chains and the food biotech corporations?

You’ll find some of these answers (in what form I cannot yet say without a close long look at what this new assessment lens is all about) in the ASTI Global Assessment of Agricultural R&D Spending, published by the International Food Policy Research Institute (IFPRI, which is one of the CGIAR institutes) in collaboration with the Global Forum on Agricultural Research (GFAR).

ASTI is Agricultural Science and Technology Indicators and the assessment says it uses “internationally comparable data on agricultural R&D investments and capacity for developing countries” (can’t see how really, as ag-biodiversity is culturally dependent, but of course Big Ag is mono-minded).

Does this impressive-sounding scrutiny have any bottom-lines for real small farmers worth reading? I am sceptical, given the CGIAR orientation, but here are two sequiturs:

“Global agricultural R&D spending in the public and private sectors steadily increased between 2000 and 2008. Most of this growth was driven by larger middle-income countries such as China and India.”

“Following a decade of slow growth in the 1990s, global public spending on agricultural R&D increased by 22 percent from 2000 to 2008—from $26.1 billion to $31.7 billion.”

I looked, but couldn’t find the connection between all this R&D and the woman wearing the sari.

Written by makanaka

November 12, 2012 at 20:49

Asia takes the research and development lead

with 2 comments

Ten Asian countries, including some developing countries in South-East Asia, have, as a bloc, caught up with the global leader in research and development (R&D) investment, the United States, a report by Scidev.net has said.

The report quoted is the National Science Board’s ‘Science and Engineering Indicators 2012’ which is a broad base of quantitative information on the U.S. and International science and engineering enterprise. The National Science Board (NSB) is the policymaking body for the USA’s National Science Foundation (NSF).

The NSB report has said that total science spend of China, India, Indonesia, Japan, Malaysia, Singapore, South Korea, Taiwan, Thailand, and Vietnam rose steadily between 1999 and 2009 to reach 32 per cent of the global share of spending on science, compared with 31 per cent in the US.

“This information clearly shows we must re-examine long-held assumptions about the global dominance of the American science and technology enterprise,” said NSF Director Subra Suresh of the findings in the ‘Science and Engineering Indicators 2012’. “And we must take seriously new strategies for education, workforce development and innovation in order for the United States to retain its international leadership position,” he said.

Well over a year ago (2010 November), the UNESCO Science Report 2010 had as its primary message stated that Europe, Japan and the USA (the Triad) may still dominate research and development (R&D) but they are increasingly being challenged by the emerging economies and above all by China.

The report depicted an increasingly competitive environment, one in which the flow of information, knowledge, personnel and investment has become a two-way traffic. Both China and India, for instance, are using their newfound economic might to invest in high-tech companies in Europe and elsewhere to acquire technological expertise overnight.

The USA's National Science Foundation (NSF) launched a number of new initiatives designed to better position the United States in global Science and engineering. Photo: National Science Board / Richard Lerner

Other large emerging economies are also spending more on research and development than before, among them Brazil, Mexico, South Africa and Turkey. If more countries are participating in science, the UNESCO Science Report 2010 saw a shift in global influence, with China a hair’s breadth away from counting more researchers than either the USA or the European Union, for instance, and now publishes more scientific articles than Japan.

A “major trend has been the rapid expansion of R&D performance in the regions of East/Southeast Asia and South Asia,” according to the biennial report ‘Science and Engineering Indicators 2012’ produced by the National Science Board, the policy-making body of the US National Science Foundation, which drew upon a variety of national and international statistics. The report also mentions that the share of R&D expenditure spent by US multinationals in Asia-Pacific has increased.

According to the new Indicators 2012, the largest global S&T gains occurred in the so-called ‘Asia-10’ – China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan and Thailand – as those countries integrate S&T into economic growth. Between 1999 and 2009, for example, the U.S. share of global research and development (R&D) dropped from 38 percent to 31 percent, whereas it grew from 24 percent to 35 percent in the Asia region during the same time. In China alone, R&D growth increased a stunning 28 percent in a single year (2008-2009), propelling it past Japan and into second place behind the United States.

“Asia’s rapid ascent as a major world science and technology (S&T) centre is chiefly driven by developments in China,” says the report. “But several other Asian economies (the Asia-8 [India, Indonesia, Malaysia, the Philippines, Singapore, South Korea, Taiwan and Thailand]) have also played a role. All are intent on boosting quality of, and access to, higher education and developing world-class research and S&T infrastructures. The Asia-8 functions like a loosely structured supplier zone for China’s high-technology manufacturing export industries. This supplier zone increasingly appears to include Japan. Japan, a preeminent S&T nation, is continuing to lose ground relative to China and the Asia-8 in high-technology manufacturing and trade,” the report says.

International R&D highlights
(1) The top three R&D-performing countries: United States, China – now the second largest R&D performer – and Japan represented just over half of the estimated $1.28 trillion in global R&D in 2009. The United States, the largest single R&D-performing country, accounted for about 31% of the 2009 global total, down from 38% in 1999.

(2) Asian countries – including China, India, Japan, Malaysia, Singapore, South Korea, Taiwan, and Thailand – represented 24% of the global R&D total in 1999 but accounted for 32% in 2009, including China (12%) and Japan (11%). The pace of real growth over the past 10 years in China’s overall R&D remains exceptionally high at about 20% annually.

(3) The European Union accounted for 23% total global R&D in 2009, down from 27% in 1999. Wealthy economies generally devote larger shares of their GDP to R&D than do less developed economies. The U.S. R&D/GDP ratio (or R&D intensity) was about 2.9% in 2009 and has fluctuated between 2.6% and 2.8% during the past 10 years, largely reflecting changes in business R&D spending. In 2009, the United States ranked eighth in R&D intensity – surpassed by Israel, Sweden, Finland, Japan, South Korea, Switzerland, and Taiwan – all of which perform far less R&D annually than the United States.

(4) Among the top European R&D-performing countries, Germany reported a 2.8% R&D/GDP ratio in 2008; France, 2.2%; and the United Kingdom, 1.9%. The Japanese and South Korean R&D/GDP ratios were among the highest in the world in 2008, each at about 3.3%. China’s ratio remains relatively low, at 1.7%, but has more than doubled from 0.8% in 1999.

“India’s high gross domestic product (GDP) growth continues to contrast with a fledgling overall S&T performance.” The figures show that China, while still a long way behind the United States, is now the second largest R&D performer globally, contributing 12 per cent of the global research spend. It has overtaken Japan, which contributed 11 per cent  in 2009. The proportion of GDP that China devotes to science funding has doubled since 1999 to 1.7 per cent and China’s pace of real growth in R&D expenditure “remains exceptionally high at about 20 per cent annually,” the report says. Overall, world expenditures on R&D are estimated to have exceeded US$1.25 trillion in 2009, up from US$641 billion a decade earlier.

“Governments in many parts of the developing world, viewing science and technology as integral to economic growth and development, have set out to build more knowledge-intensive economies,” it says. “They have taken steps to open their markets to trade and foreign investment, develop their S&T infrastructures, stimulate industrial R&D, expand their higher education systems, and build indigenous R&D capabilities. Over time, global S&T capabilities have grown, nowhere more so than in Asia.”

The scientific landscape is not conveniently demarcated by blocs, whether formed by states or by private sector interests. As UNESCO has said, even countries with a lesser scientific capacity are finding that they can acquire, adopt and sometimes even transform existing technology and thereby leapfrog over certain costly investments, such as infrastructure like land lines for telephones. Technological progress is allowing these countries to produce more knowledge and participate more actively than before in international networks and research partnerships with countries in both North and South. This trend is fostering a democratization of science worldwide. In turn, science diplomacy is becoming a key instrument of peace-building and sustainable development in international relations.

Discovery and spread of biodiversity studies

leave a comment »

FAO, The Second Report on the State of the World’s Plant Genetic Resources for Food and AgriculturePLoS (the Public Library of Science) has launched a Biodiversity Hub aiming to accelerate the discovery, dissemination and integration of biodiversity studies. The Biodiversity Hub provides three general services to users: it aggregates selected open-access biodiversity articles, adds value in the form of data/images etc and encourages community dialogue – you can find out more about these benefits in the official launch post.

Over the past decade, considerable progress in synthesizing and digitizing biodiversity related assets has been made. These resource assets include:  Specimen datasets: GBIF; Interoperability among datasets and databases: GEO BON; Taxonomic literature: BHL; Taxonomic names: Zoobank; IPNI; Catalogue of Life; Molecular sequence data: GenBank; Barcode of Life; Images: MorphBank; ARKive; Phylogenetic relationships: Tree of Life; Natural history: Encylopedia of Life; Conservation status of species: IUCN Red List; TreeBASE and WWF Wildfinder.

Scientists are amassing details about the scope and status of life’s variation at an accelerating rate. This aids our understanding of species distributions and their interactions over time. However, if we are to address the consequences of global environmental change for life’s future, biodiversity data must be integrated and synthesized to a much greater degree than they are at present, and this can be promoted by enhanced communication among the interested parties, and raising public awareness. Here, we call attention to a new community resource and tool which provides a step in the right direction.

Indian Climate Research Network

with one comment

Flower-Western_GhatsThe Indian Climate Research Network has begun work with a two-day national conference of climate researchers held in the first week of March. Described as a community of individuals and institutions which will work to enhance capacity for climate research and action in the country, the Network brings together at this stage the Indian Institute of Technology (IIT) Delhi, Indian Institute of Technology (IIT) Madras and the Centre for Science and Environment (CSE), the Delhi-based research and advocacy body.

Ambuj Sagar and Krishna Achutarao of IIT-Delhi have said that the conference itself was distinctive in some respects: perhaps for the first time in India, the organisers of a conference on climate change “reached out to find new researchers working on the subject” through a call for submission of papers. The response, according to the organisers, was overwhelming. On one hand, the meet succeeded in bringing together on one platform almost all the top names working on climate research in the country. On the other, it identified and brought to the fore a lot of micro-scale work and initiatives which have been going on in the field of climate science in various parts of India.

Besides this, the conference also aimed at developing a common understanding of the key issues; identifying lacunae in science, policy, and action that need particular attention; and initiating a platform for a dialogue between researchers, NGOs, and policy-makers.

With sessions broadly categorised under ‘science and impacts’, ‘mitigation’, ‘adaptation’ and ‘policy issues’, the meet hosted a wide variety of presentations, highlighting research that has the potential to inform and influence current policy debates. These included papers on subjects ranging from energy scenarios and low-carbon pathways in India; emissions intensity and climate change; and impact of climate change on forests, to adaptive abilities of farmers in Gujarat; impact of climate change on corals in the Lakshadweep Islands; and micro-level monitoring of concentration of greenhouse gases at Cape Rama on the west coast of India.

Written by makanaka

March 8, 2010 at 09:56

India’s misplaced glacier row

with 2 comments

India’s central government is making triumphant noises about what it sees as a vindication of its stand concerning Himalayan glaciers. The central Ministry of Environment and Forests had refuted the widely held scientific view that the glaciers of the Himalaya were shrinking, posing a grave – if not catastrophic – threat to the water security of millions downstream.

The mainstream English press in India (a majority of whose readers are urban salaried, self-employed or professional) has been toeing the central government line on the matter and has placed on front pages the story: “IPCC admits ‘Himalayan’ blunder” said Business Standard; “IPCC expresses regret over glacier melting conclusion” said The Hindu; and “West uses ‘glacier theory’ to flog India on climate change” said The Times of India.

What has the Intergovernmental Panel on Climate Change (IPCC) actually said?

Here is the full statement (dated 20 January 2010) made by the Chair and Vice-Chairs of the IPCC, and the Co-Chairs of the IPCC Working Groups.

“The Synthesis Report, the concluding document of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (page 49) stated: ‘Climate change is expected to exacerbate current stresses on water resources from population growth and economic and land-use change, including urbanisation. On a regional scale, mountain snow pack, glaciers and small ice caps play a crucial role in freshwater availability. Widespread mass losses from glaciers and reductions in snow cover over recent decades are projected to accelerate throughout the 21st century, reducing water availability, hydropower potential, and changing seasonality of flows in regions supplied by meltwater from major mountain ranges (e.g. Hindu-Kush, Himalaya, Andes), where more than one-sixth of the world population currently lives.’ ”

Intergovernmental Panel on Climate Change (IPCC)“This conclusion is robust, appropriate, and entirely consistent with the underlying science and the broader IPCC assessment.”

“It has, however, recently come to our attention that a paragraph in the 938-page Working Group II contribution to the underlying assessment refers to poorly substantiated estimates of rate of recession and date for the disappearance of Himalayan glaciers. In drafting the paragraph in question, the clear and well-established standards of evidence, required by the IPCC procedures, were not applied properly.”

“The Chair, Vice-Chairs, and Co-chairs of the IPCC regret the poor application of well-established IPCC procedures in this instance. This episode demonstrates that the quality of the assessment depends on absolute adherence to the IPCC standards, including thorough review of ‘the quality and validity of each source before incorporating results from the source into an IPCC Report’. We reaffirm our strong commitment to ensuring this level of performance.”

The text in question is the second paragraph in section 10.6.2 of the Working Group II contribution and a repeat of part of the paragraph in Box TS.6. of the Working Group II Technical Summary of the IPCC Fourth Assessment Report. The quoted text in the fourth para is verbatim from Annex 2 of Appendix A to the Principles Governing IPCC Work.

What makes the episode ugly is that this is a central government, and a ministry, which has right through 2008 and 2009 worked extra hard to push all aspects of economic growth measured by GDP. The Ministry of Environment and Forests has steadily diluted legislation protecting environment and natural resources, given opportunities to industry to sidetrack checks and balances relating to clearances (especially in forest areas) and which has gone to great lengths to cobble together a scientific-cum-economic consensus to show that GDP growth at 9% a year for the next generation will not harm the global environment nor add very much to global emissions. The hypocrisies in pressurising the IPCC into this corner are staggering. The pity is that India’s scientific community – in which true independence is rare – will do little to help the citizen understand more.