Posts Tagged ‘Nagaland’
Will it or won’t it? India’s monsoon forecast gamble
The India Meteorological Department (IMD) has released the long-awaited update of its long range forecast for the 2012 monsoon.
Stripped of its scientific jargon, this is what the update has said. There is a July model and an August model. For both months, there are three forecast categories: below normal in which rainfall in less than 94% of the long period average (LPA), normal in which the rainfall is between 94% and 106% of the LPA, and above normal in which rainfall is more than 106% of the LPA. Under the three categories, the forecast probabilities for July are (in the same order) 36%, 41% and 23% and for August they are 42%, 36% and 22%. Under any combination of probability therefore, this means that both July and August are going to be drier than usual, and coming on top of an unusually dry June, the scenarios for water availability and for agriculture come early September are all looking tough.
The volatility of the 2012 monsoon over north-eastern India can be seen in the images of the district weekly rainfall deviations for those states. Please bear in mind that with the late beginning of the 2012 monsoon, the week of June from 07 to 13 was for all practical purposes the first monsoon week. The colours signify major deviations – red for 50% of the average and below, green for 150% of the average and above. In Arunachal Pradesh, for the first week the average rainfall in districts was around 45%, the second week it was 41% and the third week it shot up to 124% – red is evenly scattered through the districts in the first two weeks and green districts appear in the third week.
In Assam, the first week’s average for all the state’s districts was 65% of the long period average, with red dominating. In the second week the average was 103%, with ‘red’ districts declining and a few greens appearing. In the third week the average zoomed to 184% with most districts being ‘green’. In neighbouring Meghalaya, the average for the districts in the three weeks was 63%, then 51% and then a steep rise to 225% in the third week. In stark contrast Nagaland and Manipur have for the duration of these three weeks seen a combined district rainfall average of 33% and if we remove the ‘green’ districts from both states of the third week, we get a dismal 15% average – it is of course quite likely that there are data anomalies in the numbers that IMD has collected from the north-east region, as automated weather stations that actually work are likely to be fewer in number than in ‘mainland’ India. (There is a spreadsheet for this data. If you want the data till date please write to me here: makanaka at pobox dot com.)

The first three weeks of monsoon 2012 in district averages for Nagaland, Manipur, Mizoram and Meghalaya
In the update, there is also a separate set of forecasts and probabilities for four major regions of India – North-West India, Central India, South Peninsula and North-East India. There are small variations for each of these in the definitions of below normal, normal and above normal. Here are the forecast probabilities for the regions:
The list of states in each of these four geographical regions is:
Northwest India: Jammu and Kashmir, Himachal Pradesh, Punjab, Rajasthan, Haryana, Chandigarh, Delhi, Uttaranchal and Uttar Pradesh.
Northeast India: Arunachal Pradesh, Meghalaya, Assam, Nagaland, Manipur, Mizoram, Tripura, Sikkim, West Bengal, Bihar and Jharkhand.
Central India: Gujarat, Madhya Pradesh, Chattisgarh, Maharashtra, Goa and Orissa.
South Peninsula: Andhra Pradesh, Karnataka, Tamil Nadu, Kerala, Lakshadweep and Andaman and Nicobar Islands.

Alarming reds and yellows over southern, central and northern India, threatening blues in north-eastern India (Bangladesh has been hit hard by floods). Graphic: IMD
The first stage forecast for the nation-wide season rainfall was issued on 2012 April 26 and this update was issued on 2012 June 22. The summary of the first stage forecast is:
“Southwest monsoon seasonal rainfall for the country as a whole is most likely to be Normal (96-104% of Long Period Average (LPA)) with the probability of 47%. The probability (24%) of season rainfall to be below normal (90-96% of LPA) is also higher than its climatological value. However, the probability of season rainfall to be deficient (below 90% of LPA) or excess (above 110% of LPA) is relatively low (less than 10%). Quantitatively, monsoon season rainfall is likely to be 99% of the LPA with a model error of ± 5%. The LPA of the season rainfall over the country as a whole for the period 1951-2000 is 89 cm.”
The IMD has said that it has taken into account the experimental forecasts prepared by the national institutes like Space Applications Centre, Ahmedabad, Centre for Mathematical Modeling and Computer Simulation, Bangalore, Center for Development of Advanced Computing, Pune and Indian Institute of Tropical Meteorology, Pune. Operational/experimental forecasts prepared by international institutes like the National Centers for Environmental Prediction, USA, International Research Institute for Climate and Society, USA, Meteorological Office, UK, Meteo France, the European Center for Medium Range Weather Forecasts, UK, Japan Meteorological Agency, Japan Agency for Marine-Earth Science and Technology, Asian-Pacific Economic Cooperation (APEC) Climate Centre, Korea and World Meteorological Organization’s Lead Centre for Long Range Forecasting – Multi-Model Ensemble have also been taken into account.
The advance guard of climate change
From late 2003 to early 2005 I was part of a small group in south Nagaland (in India’s north-east region) conducting a study on natural resource management and the prospects for tourism in the region. The study was funded by a Indian central government ministry, was ‘supervised’ by the state government and was made possible by the village community of Khonoma, in the Naga hills.
At around the mid-point of our study, when the time had come for the paddy seedlings to be transplanted, that the convergence of climate change and scarce labour resources became obvious. The seedlings were not ready to be moved at the time of year they were usually expected to be. By the time they were, the extra labour each rice farming family had mobilised in preparation for the hard work ahead, had their regular jobs and occupations to return to. The hill villages were in turmoil. Practically every single family that had a plot of terraced rice field to attend to was caught in a dilemma.
If they insisted that those who had come to the villages to help them – daughters, sons, cousins or aunts – stay back to complete the work, those helpful souls would certainly lose salaries and wages. If they let them return, they would have to look for very scarce hired labour, whose per day wage was high and which would certainly rise given the scarcity of hands available and time. It was for most families a Hobson’s choice, and by either reckoning only made the socio-economic cost of rice cultivation dearer. This was the most dramatic impact of climate change that I saw at the time, for the shift in transplanting season was considered very odd indeed by the villages, almost unprecedented.
We know now that local observations of direct effects of climate change by tribal populations and indigenous peoples corroborate scientific predictions. In a very real sense, indigenous peoples are the advance guard of climate change. They observe and experience climate and environmental changes first-hand, and are already using their traditional knowledge and survival skills – the heart of their cultural resilience – to respond. Moreover, they are doing this at a time when their cultures and livelihoods are already undergoing significant stresses not only due to the environmental changes from climate change, but from the localised pressures and economic impulses of global trade and movement of capital.
The United Nations University’s Institute of Advanced Study has just released an advance copy of what promises to be a goldmine of such observation. The volume is entitled ‘Advance Guard: Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples – A Compendium of Case Studies’. The 402 case studies summarised in this densely packed volume mention a host of specific vulnerabilities and early effects of climate change being reported by indigenous peoples (and these include cultural and spiritual impacts): demographic changes, including displacement from their traditional lands and territories; economic impacts and loss of livelihoods; land and natural resource degradation; impacts on food security and food sovereignty; health issues; water shortages; and loss of traditional knowledge.

The cover graphic of the UNU-IAS compilation 'Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples'
Impacts are felt across all sectors, including agriculture and food security; biodiversity and natural ecosystems; animal husbandry (particularly pastoralist lifestyles); housing, infrastructure and human settlements; forests; transport; energy consumption and production; and human rights. The entire range of effects on habitats and their biomes are supplied: temperature and precipitation changes; coastal erosion; permafrost degradation; changes in wildlife, pest and vector-borne disease distribution; sea-level rise; increasing soil erosion, avalanches and landslides; more frequent extreme weather events, such as intense storms; changing weather patterns, including increasing aridity and drought, fire and flood patterns; and increased melting of sea-ice and ice-capped mountains.
“In spite of these impacts,” states the UNU-IAS compilation, “indigenous peoples also have a variety of successful adaptive and mitigation strategies to share. The majority of these are based in some way on their traditional ecological knowledge, whether they involve modifying existing practices or restructuring their relationships with the environment. Their strategies include application and modification of traditional knowledge; shifting resource bases; altering land use and settlement patterns; blending of traditional knowledge and modern technologies; fire management practices; changes in hunting and gathering periods and crop diversification; management of ecosystem services; awareness raising and education, including use of multimedia and social networks; and policy, planning and strategy development.”
From Asia, I’ve picked out three cases which illustrate just how important it is to observe and learn from these responses:
BANGLADESH | Indigenous forecasting in Maheshkhali, using meteorological indicators and animal behaviour to predict cyclones. Maheshkhali Island is situated off the Bay of Bengal coast with an area of approximately 60 square km. Cyclones are the greatest disaster threat of coastal people. Research has revealed that certain indigenous prediction capacity possessed by the local people always helped them to anticipate cyclones and take necessary precautions. The indigenous cyclone prediction is even more important as it was revealed during interviews with the Maheskhali islanders that they do not understand the modern warning system with its different numerical codes (1-10) and elaboration on wind direction, as explained in the warning bulletins.
INDIA | Indigenous forecasting in India using meteorological indicators, plant features and animal behaviour. Researchers from Gujarat Agricultural University have evaluated eight indigenous forecasting beliefs between 1990 to 1998. For each year, the data was tabulated and analysed on the basis of Bhadli’s criteria. Based on the findings the researchers concluded that many of the beliefs are reliable indicators of monsoon. The study has helped to restore the people’s confidence in their own traditional knowledge and skills. As climate change occurs, these traditional forecasting indicators may change. Locals have to continue their observations and adjust their predictions accordingly to ensure that correct coping mechanisms will be applied.
INDONESIA | Customary Iban Community. This study examines the social and institutional practices of a sedentary Iban sub-tribe in the upstream part of the Kapuas system in governing their life. In 2008, the Sungai Utik community acquired a formal, recognition of their institutional capacity to live at the center of one of the most complex ecosystems that is the tropical rainforest of Kalimantan. The Indonesian Eco-label Institute provided the community logging practice of the Sungai Utik Ibans its “seal of ecological appropriateness”. The Sungai Utik life-space is part of the bigger climatic zone just north of the Equator that has been predicted to experience higher precipitation over the course of climate change in this century, particularly in comparison with the last three decades of the last century. It means that the community should learn to adapt to a transformed rainy season—the duration of which and the timing of its start and ending are also subject to change—for the crucial nugal (planting) rituals.