Resources Research

Making local sense of food, urban growth, population and energy

Posts Tagged ‘Maharashtra

The drying of the Deccan

leave a comment »

This panel of 12 images shows the change that takes place in a region of the Deccan. Each image shows what is called a Normalised Difference Vegetation Index (NDVI) for the region. This is a rolling eight-day series computed daily using imagery from the Terra/MODIS system and viewed using the NASA Worldview website.

The colours (green and brown shades, whitish shades) show us the vegetation health with deep green being better than light green, dark brown being better than light brown. The index is also used to signal where areas are beginning to experience arid and water-scarce conditions.

The region is the west-central Deccan – the Karnataka Plateau – corresponds to the Vijayapur (Bijapur) district of north Karnataka with parts of Bagalkot district and is part of the central Indian semi-arid bioclimatic zone.

The pictures in the panel show the vegetation extent and health (NDVI) calculated on that day for an eight-day period. Each picture is a fortnight apart, and this series starts on 4 November 2016 (bottom right) and ends on 7 April 2017 (top left). The retreat of the green is seen clearly from one fortnight to the next.

Of interest in this region is the Almatti dam and reservoir, in the Krishna river basin, which is visible in the lower centre of each picture. On 13 April there was no water in Almatti, which has a full capacity of 3.105 billion cubic metres (bcm). For the week ending 30 March it had 0.015 bcm of water, the week ending 6 April 0.001 bcm.

For the week ending 3 November 2016, which is when the panel of pictures begins, Almatti had 2.588 bcm of water. The reservoir water runs a hydroelectric power plant, of 240 MW, and which needs flowing water to turn the turbines.

When the reservoir is full, the hydel plant produces about 175 million units of electricity. But on 13 March the Central Electricity Authority’s daily report showed that Almatti could produce only 3.02 million units. On 10 April, this had plunged to 0.04 million units, but the hydel plant had produced no power since 1 April.

Written by makanaka

April 19, 2017 at 13:07

Villages in their splendid talukas

leave a comment »


As part of my continuing and long term study on the relation between populations both rural and urban, the land base upon which they depend for the growing of food, and the socio-economic changes taking place in our districts, I have begin an examination of how households are distributed in administrative regions, that is, districts and talukas. This graphed plot describes one kind of finding. (Click here for a full size plot that lets you explore each data point.)

rg_nrega_pics_201612States are administratively divided into districts (earlier the concept of a ‘division’, which was a group of districts, was more common – the ‘division’ is still used, for revenue determination but also for home affairs) and these are divided into talukas. How many talukas does the typical district have? Some have four, others as many as 12. There are talukas whose households are entirely rural as there is not a single census town, let alone a municipal council, within its precincts. The taluka contains villages and these can be numerous. Some talukas may have 50-60 villages whereas others may have 200 and more.

It is always an interesting matter to ponder. How did households in a small sub-region – at the confluence of a stream and a river for example or at the edge of a plain and at the margins of hills – become villages and what determined the distribution of such hamlets in a very local habitat? The factors were always environmental and there was often a strong cultural reason, such as proximity to a sacred site, a mandir or a venerated shrine, historical sites (such as those mentioned in the Ramayana and documented in detail thereafter in numerous local commentaries).

From the set of districts analysed so far a few guiding figures have emerged. The number of rural households in a taluka varies from 7,200 to 96,800; the number of villages in a taluka varies from 28 to 338; the average number of households in a village is 330; there is one urban household for every 3 rural households.

Where the agro-ecological conditions are favourable, there is to be found a denser gathering of villages and these will have larger populations. This can easily be understood. It is less clear how the toil of the households accommodated in a large number of villages are required to maintain, in many ways, urban households which are now clustered in a town or two of the same taluka. This dependence is what a study of not only the rural-urban population, but also how it is distributed within agro-ecological boundaries, can help uncover. The graphed plot included here is one step towards that understanding.

Sizing up rural and urban settlements in Maharashtra

leave a comment »

rg_maharashtra_districts_builtup_201610The districts of Jalna, Osmanabad, Hingoli, Satara, Ratnagiri, Washim, Nandurbar, Gondiya, Gadchiroli and Sindhudurg in Maharashtra all enjoy a rural built-up to urban built-up ratio of more than 2 (where the built-up area of the district’s rural settlements are at least twice the area of its urban settlements).

In the chart, the light green bars show a district’s rural built-up area, the light maroon its urban built-up area. The number associated with the name of the district is the ratio between the two kinds of built-up area.

Such a comparison helps us understand the dependency of the two kinds of populations in a district, rural and urban, upon the natural resources (as classified by land types). The chart shows us that some districts (see Jalgaon, Sholapur, Satara and Ratnagiri) have total rural built-up areas of 150 square kilometres and above. But whereas the urban built-up areas of Jalgaon and Sholapur are more than 100 sq km each this is not so for the other two districts.

Districts may have similar ratios between rural and urban built-up areas – see Ahmednagar, Akola and Dhule – but whereas the built-up areas of both types are more than 100 sq km in Ahmednagar they are smaller in the other two districts. There are only three districts for which the total rural built-up area is less than 50 sq km: Parbhani, Hingoli ad Washim.

There are 15 districts in which there is at least 1.5 sq km of rural built-up area for 1 sq km of urban built-up and this indicates that in these districts the base of agricultural and allied activities is still strong and therefore needs continuous encouragement. There are 7 districts for which this ratio is between 1.5 and 1 and these therefore must be watched for signs of quickening urbanisation which will need to be curbed in the interests of sustainability and indeed of the provision of food.

I have taken the data from the land use and land change information for 2011-12 collected by the Resourcesat-2 satellite with land classification and calculation carried out by the National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO), Department of Space, under the Natural Resources Census Project of the National Natural Resources Repository Programme. It is available through Bhuvan, the geo-platform of ISRO.

Urban areas are non-linear built-up areas covered by impervious structures adjacent to or connected by streets. This class includes residential areas, mixed built-up, recreational places, public and private utilities, communications, commercial areas, reclaimed areas, vegetated areas within urban zones, transportation infrastructure, industrial areas and their dumps, and ash/cooling ponds. Rural built-up areas are the lands used for human settlement in which the majority of the population is involved in agriculture. These are built-up areas, small in size, mainly associated with agriculture and allied sectors and non-commercial activities. They can be seen in clusters both non-contiguous and scattered.

The last 4 districts – Nagpur, Nashik, Thane and Pune – have their urban built-up bars coloured differently to indicate that their scales are beyond, and very much above, the 150 sq km of the chart. Mumbai city and suburban is omitted entirely.

How a district employs land and crop

leave a comment »

A plotting of the cropland size categories with the number of holdings for the district of Hingoli in Maharashtra. The central group of rectangles displays the distribution, relative to each other, of the size categories of holdings (in hectares, ha.). The blue squares, also relative to each other, displays the number of holdings for each farm size category. The data source is the Agricultural Census 2010-11.

A plotting of the cropland size categories with the number of holdings for the district of Hingoli in Maharashtra. The central group of rectangles displays the distribution, relative to each other, of the size categories of holdings (in hectares, ha.). The blue squares, also relative to each other, displays the number of holdings for each farm size category. The data source is the Agricultural Census 2010-11.

In the district of Hingoli, Maharashtra, the allocation of cultivated land between food crops and non-food crops is somewhat in favour of non-food crops. That is, for every hectare planted with a food crop 1.3 hectares is planted with a non-food crop. The broad categories we have under food crops are: cereals, pulses, vegetables and fruit. Under non-food crops there are: oilseeds, sugarcane, fibres, spices and fodder.

Where Hingoli district is in Maharashtra state.

Where Hingoli district is in Maharashtra state.

The Agricultural Census 2010-11 detailed data for Hingoli shows that at the time of the survey 493,927 hectares were under cultivation for all kinds of crops, both food and non-food. As this is a count of how much land was under cultivation by crop, the total land under cultivation for all crops taken together is more than the total land under cultivation when measured according to land use. This is so because of crop rotation during the same agricultural year, inter-cropping and mixed cropping – for a plot, the same land may raise two kinds of crops in a year.

Size categories of farm holdings, with number of holdings and total area under each category for Hingoli district, Maharashtra.

Size categories of farm holdings, with number of holdings and total area under each category for Hingoli district, Maharashtra.

The 493,927 hectares under cultivation in Hingoli are divided under 213,286 hectares for food crops and 280,640 hectares under non-food crops. This gives us the overall picture that the farming households of Hingoli choose to give more land for crop types under the ‘non-food’ category. As the settlement pattern of Hingoli is very largely rural – that means, few towns and these are the district headquarters and two more taluka centres – do the farming households of Hingoli grow enough to feed themselves comfortably? Do the farming households have the labour needed to continue cultivating so that they can feed themselves and their village communities? How are choices relating to land use and crop made?

Using the publicly available information from a variety of government sources, we are able to find parts of answers. The Agricultural Census 2010-11 is one such source, the Census of India 2011 is another, so are the tables provided by the Department of Economics and Statistics of the Ministry of Agriculture. The graphical representation I have prepared here helps provide the land use basis upon which to layer the district information from other sources.

Regions of wheat, lands of rice

leave a comment »


The return of budgetary focus towards agriculture and the economies of rural India will help deepen our understanding about where crops are grown and for whom. These are still more often described in national aggregate terms of annual estimates, than by season, state and the growing appetites of urban agglomerations.

This could change over the next few years, especially as the so-called services sector shrinks both by the number of people it employs and by its importance to the national economy. Services – a peculiarly invented term that was quite unknown and unused when I was a teenager – has come about because of the financialisation of those portions of social activity which were done at small scale, informally and as adjunct activities to the work of the public sector, the manufacturers and factories, and the great numbers of cultivators (and those working on agricultural produce). The many enforced errors of contemporary economics means that this will continue to change – not without pain and confusion – but that social activity that has some economic dimension will return to what it was two generations earlier.

While it does, we find there are differences in the concentration of food staples produced – that is, how much by quantity do certain regions grow our food staples as a significant fraction of national production of that food staple. This is more readily available as state quantities instead of district. I have suggested to the Ministry of Agriculture that this ought to be monitored not only at the level of the district but also by the agro-ecological zone, or region, for we have 120 in India, and they represent varying climatic conditions, soil typologies, river basins and cultivation systems.

At present, what we see then is that for rice and wheat, the top three producing states account for 36.7% (rice) and 62% (wheat) of the country’s production. This distribution – or concentration – should cause a review of the crop choices that our kisans make in the growing districts and agro-ecological zones. For a simple pointer such as this tells us that 37 out of every 100 quintals of rice grown in India are grown in West Bengal, Uttar Pradesh and Andhra Pradesh and that 62 out of every 100 quintals of wheat grown in India are grown in Uttar Pradesh, Punjab and Madhya Pradesh.

The corresponding distribution/concentration with coarse cereals is better than wheat but not better than rice for 45.4% of total coarse cereals are grown in Rajasthan, Karnataka and Andhra Pradesh. Likewise, 48.8% of all pulses are grown in Madhya Pradesh, Rajasthan and Maharashtra. The tale is similar with oilseeds (63.8% in Madhya Pradesh, Rajasthan and Gujarat), with sugarcane (73% in Uttar Pradesh, Maharashtra and Karnataka) and cotton (69.8% in Gujarat, Maharashtra and Andhra Pradesh).

With horticulture – that is, vegetables and fruit – there is less state-level concentration to be seen. India’s kisans grow about 170 million tons of vegetables and about 85 million tons of fruit a year and their concentrations vary – West Bengal and Odisha grow a great deal of brinjal, Maharashtra grows onions, Uttar Pradesh and West Bengal lead in potatoes, Madhya Pradesh and Karnataka grow the most tomatoes, and so on. Overall however, the range of distribution amongst the large states of their produce of vegetables and fruit is not as concentrated as with the food staples. The reasons for this difference can tell us a great deal about the need for district and watershed-level food security, employing as always sound zero budget farming techniques (no external inputs) and local and indigenous knowledge of cultivation techniques.

Between Berar and Nizam, a taluka in Maharashtra

leave a comment »


This is a small taluka in Vidarbha, Maharashtra. To the north, not far away, and visible on the horizon, is the line of hills called the Sahyadriparbat, which is also called the Ajanta range after the site with the remarkable frescoes.

Also due north is the city of Akola, and a little farther away north-east is Amravati, named after Amba whose ancient temple the old city, with more than 900 years of recorded history, is built around. To the west, in a nearly direct line west, is Aurangabad. To the south had stretched, not all that long ago, the dominions of the Nizam of Hyderabad, to which this little taluka had once belonged.

RG_Hingoli_Sengaon_201601Sengaon is the name of this taluka (an administrative unit unimaginatively called a ‘block’ by the administrative services, elsewhere a tehsil or a mandal) and today it is one of five talukas of the district of Hingoli, which itself is only very recent, for before 1999 it was a part of the district of Parbhani. But Hingoli town is an old one – its cantonment (old bungalows, large compounds) was where the defenders of this part of the Nizam’s northern dominions resided (over the frontier had been Berar), and there was a large and thriving market yard here, as much for the cotton as for the jowar.

The villages of Sengaon are mostly small and agricultural, which is how the entire district was described in the district gazetteer of the 1960s. There are today 128 inhabited villages in this little taluka, and this chart (click it for a full size version, data from Census 2011)  shows how their populations depend almost entirely on agriculture – for the group of villages, 92% of all those working do so in the fields, whether their village is as small as Borkhadi or Hudi, or as large as Sakhara or Palshi.

There were Bhois here (and still are), the fishermen and one-time litter-bearers, there are ‘deshastha‘ Maratha Brahmins, there are ‘Karhada‘ who take their name from Karhad, the sacred junction of the Koyna and the Krishna in Satara district, there are the former leather-workers and rope-makers called the ‘Kambhar‘, there are the weavers who are the ‘Devang‘ (with their four sub-divisions, and themselves a division of the great Dhangars or shepherds), there are the ‘Virasaiva‘ or the ‘Shivabhakta‘ or the ‘Shivachar‘ (all Lingayats) who have for generations been traders and agriculturists.

RG_Shengaon_villages3There are the ‘Pata Jangam‘ still who must lead a celibate life and could be distinguished by the long loose roseate shirts they wore and who spent their days in meditation and prayer, there were the ‘Mali‘ the fruit and vegetable growers the gardeners and cultivators (and in times past their society was divided according to what they grew so the ‘phool Mali‘ for flower the ‘jire Mali‘ for cumin seed and the ‘halade Mali‘ for turmeric), and there are the Maratha – the chief warriors, land owners and cultivators – and the 96 families to which they belong, there are Maheshvari Marwaris, the ‘suryavanshi‘ or ‘chandravanshi‘ Rajputs, the Lambadi who at one time were grain and* salt carriers but also cattle breeders and graziers, and the ‘Vadar‘ or stone and earth workers.

This is who they are and were in the taluka of Sengaon, beyond and away from the dry and terse descriptions contained on government beneficiaries lists and drought relief programmes. They know well their trees in the expansive grasslands of the north Deccan – the Indian bael, the ‘daura‘ or ‘dhamora‘ tree, the ‘saalayi‘ whose bark and gum resin treats all sorts of ailments, the ‘madhuca‘ or mahua, the amalaki – and do their best to protect them; the twigs and sticks that fuel their ‘chulhas’ are those which fall to the earth.

It is a small taluka but old, like the others in the ancient north Deccan, and in Marathi, some of the elders of the villages here explain, with great embellishment and pomp, how the Brihat Samhita contains detailed instructions of what to plant on the embankments of a water tank, especially the madhuca, which they will add could be found in villages whose names they all know well: Pardi, Shivni, Karegaon, Barda, Sawarkheda, Suldali, Kawardadi, Datada, Jamthi, Sabalkheda …

Written by makanaka

January 6, 2016 at 12:22

Water and a district in Maharashtra

leave a comment »


In this panel of maps the relationship between the district of Parbhani (in the Marathwada region of Maharashtra) and water is graphically depicted over time. The blue squares are water bodies, as seen by a satellite equipped to do so. The intensity of the blue colour denotes how much water is standing in that coloured square by volume – the deeper the blue, the more the water.

Water bodies consist of all surface water bodies and these are: reservoirs, irrigation tanks, lakes, ponds, and rivers or streams. There will be variation in the spatial dimensions of these water bodies depending on how much rainfall the district has recorded, and how the collected water has been used during the season and year. In addition to these surface water bodies, there are other areas representing water surface that may appear, such as due to flood inundations, depressions in flood plains, standing water in rice crop areas during transplantation stages. Other than medium and large reservoirs, these water features are treated as seasonal and some may exist for only a few weeks.

Click on this detail for a full size image (1.7MB) of the panel of fortnightly maps.

Click on this detail for a full size image (1.7MB) of the panel of fortnightly maps.

The importance of monitoring water collection and use at this scale can be illustrated through a very brief outline of Parbhani. The district has 830 inhabited villages distributed through nine tehsils that together occupy 6,214 square kilometres, eight towns, 359,784 households in which a population of 1.83 million live (1.26 rural and 0.56 million urban). This population includes 317,000 agricultural labourers and 295,000 cultivators – thus water use and rainfall is of very great importance for this district, and indeed for the many like it all over India.

The map of Parbhani district and its talukas, from the Census 2011 District Census Handbook.

The map of Parbhani district and its talukas, from the Census 2011 District Census Handbook.

This water bodies map for Parbhani district is composed of 18 panels that are identical spatially – that is, centred on the district – and display the chronological progression of water accumulation or withdrawal. Each panel is a 15-day period, and the series of mapped fortnights begins on 1 January 2015.

The panels tell us that there are periods before the typical monsoon season (1 June to 30 September) when the accumulation of water in surface water bodies has been more than those 15-day periods found during the monsoon season. See in particular the first and second fortnights of March, and the first fortnight of April. [Here is a good quality image of the census map, 968KB.]

During the monsoon months, it is only the two fortnights of June in which the accumulation of water in the surface water bodies of Parbhani district can be seen. The first half of July and the second half of August in particular have been recorded as relatively dry.

This small demonstration of the value of such information, provided at no cost and placed in the public domain, is based on the programme ‘Satellite derived Information on Water Bodies Area (WBA) and Water Bodies Fraction (WBF)’ which is provided by the National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO), Department of Space, Government of India.

For any of our districts, such continuous monitoring is an invaluable aid to: facilitate the study of water surface dynamics in river basins and watersheds; analyse the relationships between regional rainfall scenarios and the collection and utilisation of water in major, medium reservoirs and irrigation tanks and ponds; inventory, map and administer the use of surface water area at frequent intervals, especially during the crop calendar applicable to district and agro-ecological zones. [Also posted on India Climate Portal.]

Written by makanaka

October 12, 2015 at 12:10

Three months of swinging Celsius

leave a comment »


The middle of February is when the chill begins to abate. The middle of May is when the monsoon is longed for. In our towns, district headquarters and cities, that climatic journey of 90 days is one of a steady rise in the reading of the temperature gauge, from the low 20s to the mid 30s.

This large panel of 90 days of daily average temperatures shows, in 57 ways, the effects of the rains that almost every district has experienced during the last two months. For each city, the curved line is the long period ‘normal’ for these 90 days, based on daily averages. Also for each city, the second line which swings above and below the ‘normal’ is the one that describes the changes in its daily average from February to May 2015.

[You can download (1.52MB) a full resolution image of the panel here.]

Where this second line crosses to rise above the normal, the intervening space is red, where it dips below is coloured blue. The patches of red or blue are what tell us about the effects of a lingering winter, or rains that have been called ‘unseasonal’ but which we think signal a shift in the monsoon patterns.

The 90-day temperature chart for Goa, with daily averages nearer the long period normal over the latter half.

The 90-day temperature chart for Goa, with daily averages nearer the long period normal over the latter half.

Amongst the readings there is to be found some general similarities and also some individual peculiarities. Overall, there are more blue patches than there are red ones, and that describes how most of the cities in this panel have escaped (till this point) the typical heat of April and May. The second noteworthy general finding is that these blue patches occur more frequently in the second half of the 90 days, and so are the result of the rainy spells experienced from March to early May.

Hisar (in Haryana) has remained under the normal temperature line for many more days than above or near it. So have Gorakhpur (Uttar Pradesh), Pendra (Chhattisgarh), Ranchi (Jharkhand), Nagpur (Maharashtra) and Jharsuguda (Odisha).

On the other hand in peninsular and south India, the below ‘normal’ daily average temperature readings are to be found in the latter half of the time period, coinciding with the frequent wet spells. This we can see in Kakinada, Kurnool and Anantapur (Andhra Pradesh), Bangalore, Gadag and Mangalore (Karnataka), Chennai, Cuddalore and Tiruchirapalli (Tamil Nadu) and Thiruvananthapuram (Kerala). [A zip file with the charts for all 57 cities is available here (1.2MB).]

What pattern will the next 30 days worth of temperature readings follow? In four weeks we will update this bird’s eye view of city temperatures, by which time monsoon 2015 should continue to give us more blues than reds. [Temperature time series plots are courtesy the NOAA Center for Weather and Climate Prediction.]

The cities and their multitudes

leave a comment »

The 166 Indian cities in the UN population list. What do the colours mean? Dark blue is for city populations up to 250,000; light blue is 250,000-500,000; pink is 500,000 to 1 million; orange is 1 million to 5 million; red is 5 million and above. The source for the data is 'World Urbanization Prospects: The 2014 Revision', from the United Nations, Department of Economic and Social Affairs, Population Division.

The 166 Indian cities in the UN population list. What do the colours mean? Dark blue is for city populations up to 250,000; light blue is 250,000-500,000; pink is 500,000 to 1 million; orange is 1 million to 5 million; red is 5 million and above. The source for the data is ‘World Urbanization Prospects: The 2014 Revision’, from the United Nations, Department of Economic and Social Affairs, Population Division.

Bigger cities growing at a rate faster in the last decade than earlier decades. This is what the image shows us. These are 166 cities of India whose populations in 2014 were 300,000 and above. The jagged swatches of colour that seem to march diagonally across the image describe tiers of population, for the table is arranged according to the populations of these cities in 2015, with the annual series beginning in 1985 and extending (as a forecast) until 2030.

The populations of four cities will cross 0.5 million in 2015: Jalgaon (Maharashtra, whose population will be 506,000 in 2015), Patiala (Punjab, 510,000), Thoothukudi (Tamil Nadu, 514,000) and Imphal (Manipur, 518,000). They will join a group of cities which in 2014 crossed the 0.5 million mark: Gaya (Bihar, 508,000 in 2015), Rajahmundry (Andhra Pradesh, 511,000), Udaipur (Rajasthan, 517,000), Bilaspur (Chhattisgarh, 518,000), Kayamkulam (Kerala, 533,000) and Agartala (Tripura, 550,000).

Just ahead of these are Vellore (Tamil Nadu, whose population in 2015 will be 528,000 and which crossed 0.5 million in 2013), Mathura (Uttar Pradesh, 529,000 and 2014), Tirunelveli (Tamil Nadu, 530,000 and 2011), Sangli (Maharashtra, 545,000 and 2009), Tirupati (Andhra Pradesh, 550,000 and 2013), Ujjain (Madhya Pradesh, 556,000 and 2009), Kurnool (Andhra Pradesh, 567,000 and 2012), Muzaffarnagar (Uttar Pradesh, 587,000 and 2011), Erode (Tamil Nadu, 590,000 and 2010) and Cherthala (Kerala, 593,000 and 2013).

To make this chart I have used the data from ‘World Urbanization Prospects: The 2014 Revision’, from the United Nations, Department of Economic and Social Affairs, Population Division. The 166 cities of India are extracted from the main table, ‘Annual Population of Urban Agglomerations with 300,000 Inhabitants or More in 2014, by Country, 1950-2030’.

This quarter, five Indian cities will cross the million mark

with one comment

RG-city_population_landmarks_201311This quarter, that is October to December 2013, a number of India’s cities will cross population landmarks. The 2011 Census fixed the country’s urban population at just over 311 million, a population that had grown over ten years by 31.8% (compared with the rural population growth of 12.3%).

What this means is that India’s cities and towns are adding to their numbers every year and every month at roughly the decadal rate seen for 2001-11. Each urban centre has recorded its own rate of population growth but all together, the rate of growth in the populations of India’s urban settlements has raised the number of Class I towns (those with a population of 100,000 and more) to 490 – the category had 394 in 2001!

So, for the last quarter of 2013, here are the new population marks that will be crossed:
* Tiruppur in Tamil Nadu (1,033,000), Aligarh in Uttar Pradesh (1,002,000), Bareilly in Uttar Pradesh (1,065,000), Mysore in Karnataka (1,047,000) and Guwahati in Assam (1,018,000) will all cross the million mark.

And moreover:
* Muzaffarabad in Uttar Pradesh (527,000), Kurnool in Andhra Pradesh (531,000), Vellore in Tamil Nadu (515,000), Udaipur in Rajasthan (504,000) and Tirunelveli in Tamil Nadu will cross the 0.5 million population mark.
* Nellore in Andhra Pradesh (627,000), Malegaon in Maharashtra (614,000) and Durgapur in West Bengal (610,000) will cross the 0.6 million population mark.
* Puducherry (union territory, 708,000), Guntur in Andhra Pradesh (733,000) and Gorakhpur in Uttar Pradesh (714,000) will cross the 0.7 million population mark.
* Warangal in Andhra Pradesh (826,000) has crossed the 0.8 million population mark. Moradabad in Uttar Pradesh (987,000), Bhubaneshwar in Odisha (967,000) and Jalandhar in Punjab (928,000) will cross the 0.9 million population mark.