Posts Tagged ‘Maharashtra’
The Beed syndrome

Outline of Beed district, Maharashtra: 11 talukas, 1,368 villages and population of 2.585 million in 2011.
Wandering through the rural districts of Maharashtra as a teenager I can recall well how villages were laid out, as collections of homes and in also in relation to the fields and natural features nearby. These early impressions were strengthened by travels over the years, in neighbouring states (Gujarat, Karnataka, Madhya Pradesh, Andhra Pradesh) and a window seat in a state transport bus was the best vantage point to have to watch how the landscape unfolded and how it was being attended to.
Outside the ‘circle’ of dwellings and small institutional buildings (school, public health centre, panchayat block, mandir) – ‘circle’ is not the typical shape, which is irregular and in our motorised time follows more the alignment of a panchayat road than the dictates of topography and planning – is the land to be looked after by the village, the ‘grama’, and which provides it sustenance of every kind.
There is the land allocated to grow crops and these provide food and are also what used to be called cash crops, there is land to be shared by those who keep cattle, buffaloes, goats and sheep so that these animals can graze, plots in which fodder is grown, there is land for orchards (such as mango, amla, guava) and land for the organised cultivation of vegetables.
There is also the land in which grow densely and undisturbed a variety of local trees and bushes, and which may be called forested or wooded. These tracts are just as important to the grama as are the cultivated fields and grazing grounds, for they contain the wild relatives of much that grows in the precincts of the grama and offer to the husbanded animals varieties of grasses and plants that the ruminants seek at certain times. The forested area may or may not include a sacred grove (guarded by snakes that are well respected).
There are the waterforms – ponds and tanks, natural channels for monsoon streams and a few shallow-cut and narrow canals from which water is shared, several low check dams used to impound water at the start of a growing season, and dug wells, some of which are indeed old and lined with stone from earlier eras. (The pumpset and borewell have dramatically disturbed and altered the grama’s relation with water and the meanings of its waterforms, and what I saw in the late 1970s has mostly vanished.)
How these different uses of a grama’s land are decided upon by its cultivator households determines its swarajya nature – that is, its capacity to be largely independent and self-sufficient in most material needs. Whether from a bus window at a halt or when on foot, I could make out a distribution of land use that was designed to serve the ‘grama’ as wisely as possible.

Comparing land allocated to major crop groups in Beed, 2010-11 and 1995-96, in hectares.
Ratios could perhaps have been calculated even then in the 1970s (they were done, much earlier, as large-scale and very authoritative planning guidelines in some of the princely states such as Gwalior, Mysore and Patiala). With today’s remote sensing, doing so has become very much easier while at the same time being theoretical only, the advent of ‘market forces’ having weakened the commune-like ‘grama’ social and economic structure through an appeal to the individual.
The ratios – one could see even then, 40 years ago – would vary because of the influence of three factors: the watershed or the manner in which water became manifest in the ‘grama’ precincts, the manner in which plant species dominated and were distributed together with how they were shaped by climate (‘agro-ecology’ in today’s parlance), and the soil characteristics together with the underlying shallow geological features.
How would and how did a grama respond? At the time, being observant but unschooled in such matters, I took no notes. Today, the only sources of such information are old administrative records (such as the district gazetteers of the British colonial era) and more recently the data collected by the periodic agricultural census.
Using the agricultural census data, I set out to examine if and how the land use of a district (Beed, in central Maharashtra) had changed, and in what way. Records at the level of grama cannot be found other than locally (if they have not been consumed by termites or become mouldy compost). But in the databases of the agricultural census one gets a clue of how much is changing and in what direction.
The available time-span for comparison is a small one, 1995-96 and 2010-11, these being two different agricultural census series. For Beed district, the difference in cultivated land (including that land that was fallow at the time the census was taken) was 100,000 hectares with the increase being from 903,672 hectares in 1995-96 to 1,004,006 hectares in 2010-11. This is a very large increase over so short a period and we shall see why.
The agricultural census records the distribution of land to various kinds of crops which is called a cropping pattern. Examining the cropping pattern for Beed district in 1995-96 and in 2010-11 I found several major changes. First, about 100,000 hectares had been brought under cultivation. From where? The census does not tell us. We would have to look at other records. It is likely that these new cultivation areas were earlier what are called ‘waste land’ (this is a British-era term invented to disparage grazing grounds and their importance to our desi cow).
The most striking change is the reduction, in 2010-11, by a whopping 196,879 hectares, in land used to cultivate cereals. The next big change is the addition in 2010-11 of 143,659 hectares of land given to the cultivation of fibre crops (that is, cotton). Third, is the increase by 50,365 hectares (from 15,240 in 1995-96) of land for sugarcane. And fourth are the increases by 45,617 hectares of land for pulses and by an almost similar area – 44,993 hectares – for oilseeds.

My worksheet for the ‘Beed syndrome’
Without any other kind of information that could be used to better explain these changes, I might infer: (a) that the change in the land allocated to cereals has happened because the kisans of Beed’s gramas decided that having a surplus of cereals is not as lucrative as having a surplus of cash crops, (b) that cotton as a cash crop is the district’s most valuable ‘export’ of cultivated biomass, (c) that the more than four-fold increase in land under sugarcane means that more water has been made available for the district (as sugarcane needs more water than most crops), (d) that the central government’s programmes to increase the cultivation of pulses and of oilseeds are working well in Beed.
How tenable are these inferences? The first, about cereals, needs to be seen through the region’s cereal preferences. In Beed, like in many districts of Maharashtra and the dryland areas of the north Deccan plateau, it is jowar and bajra that are grown and eaten. By weight, jowar and bajra together account for 80% of the cereals Beed grows (about 50% jowar and 30% bajra). These are not surplus cereals but staple foods. Second, it is possible that Beed’s kisans decided that the income from their two cash crops, sugarcane and cotton, could be partly used to purchase staple cereals grown elsewhere and so balance their diet.
This needs more investigation, although my guess is that they were incorrect in their choices as sugarcane not only takes scarce water away from other needs, the political control of local sugar economies makes income from the crop volatile and unreliable. Likewise cotton, which is controlled by traders and the big players in mechanised looms – with the seeds and inputs being controlled by the biotech industry if Beed’s kisans were persuaded to choose bt cotton over desi varieties. The one bright spot is the last inference, for even today, nearly every cultivating district is deficit in pulses and every addition is a welcome one. It is the same for oilseeds (the intention being to reduce India’s import of palm oil) provided the oilseeds suit the agro-ecology and are processed and used locally.
The final aspect of this change in how Beed has allocated its cultivable land has to do with the amount of food the district’s population (that means the 11 talukas with their 1,368 gramas and eight urban centres) needs. In 1995-96 the district had 713,196 hectares of land under food crops and by 2010-11 that area had reduced to 562,029 hectares. In the other direction, in 1995-96 the district had 190,335 hectares under non-food crops and by 2010-11 that area had increased to 429,352 hectares.
Aside from calculations about yield and income, I treated this as an indicator of hectares of food growing capability per unit of population. In 1991 the district population was 1.822 million and in 2011 it was 2.585 million. The indicator I have designed is a quite simple one: food-growing hectare/consumer unit. (A consumer unit is a head of population weighted by quantity of food typically consumed, adapted from the National Sample Survey method.)
Using this indicator, the difference between 1995-96 and 2010-11 is large and stark. The 713,196 food hectares in Beed in 1995-96 provided a cultivable base of 0.47 hectare per population consumer unit. But 15 years later in 2010-11 the food hectares available was 562,029 and those provided a cultivable base of 0.26 hectare per population consumer unit.
What led to such a precipitous reduction? There could be a combination of many factors. Based on what I learned while working on a central government programme, swarajya or self-sufficiency whether for a grama or a district is never part of the intention that guides a ministry of agriculture scheme. Nor is swadeshi – that what is entirely local and indigenous as much as for a material input as for a practice.
Where Beed is concerned, with its 11 talukas there is the possibility that one or more large and more populated talukas (like Georai, Beed, Ashti) are skewing the district’s overall indicator. I will shortly, time permitting, post an update which examines the talukas (Patoda, Shirur and Manjlegaon are entirely rural) and how they contribute to (or not) the ‘Beed syndrome’.
Masses of cotton but mere scraps of vegetables

The sizes of the coloured crop rectangles are relative to each other based on thousand hectare measures. The four pie charts describe the distribution of the main crops amongst the main farm sizes.
For a cultivating household, do the profits – if there are any – from the sale of a commercial crop both enable the household to buy food to fit a well-balanced vegetarian diet, and have enough left over to bear the costs of its commercial crop, apart from saving? Is this possible for smallholder and marginal kisans? Are there districts and talukas in which crop cultivation choices are made by first considering household, panchayat and taluka food needs?
Considering the district of Yavatmal, in the cotton-growing region of Maharashtra, helps point to the answers for some of these questions. Yavatmal has 838,000 hectares of cultivated land distributed over 378,000 holdings and of this total cultivable area, the 2010-11 Agriculture Census showed that 787,000 hectares were sown with crops.
Small holdings, between 1 and 2 hectares, account for the largest number of farm holdings and this category also has the most cultivated area: 260,000 hectares. Next is farms of 2 to 3 hectares which occupy 178,000 hectares, followed by those of 3 to 4 hectares which occupy 92,000 hectares.
The district’s kisans allocate their cultivable land to food and non-food crops both, with cereals and pulses being the most common food crops, and cotton (fibre crop) and oilseeds being the non-food (or commercial) crops.
How do they make their crop choices? From the agriculture census data, a few matters immediately stand out, which are illustrated by the graphic provided. First, a unit of land is sown 1.5 times in the district or, put another way, is sown with one-and-a-half crops. This means crop rotation during the agricultural year (July to June) is practiced but – with Yavatmal being in the hot semi-arid agri-ecoregion of the Deccan plateau with moderately deep black soil – water is scarce and drought-like conditions constrain rotation.
Second, land given to the cultivation of non-food crops is 1.6 times the area of land given to the cultivation of food crops (including the crop rotation factor), a ratio that is made abundantly clear by the graphic. This tells us that the food required by the district’s households (about 647,000 of which about 516,000 are rural) cannot be supplied by Yavatmal’s own kisans.
The vegetables required by the populations of Yavatmal’s 16 talukas (Ner, Babulgaon, Kalamb, Yavatmal, Darwha, Digras, Pusad, Umarkhed, Mahagaon, Arni, Ghatanji, Kelapur, Ralegaon, Maregaon, Zari-Jamani, Wani) can in no way be supplied by the surprisingly tiny acreage of land allocated to their cultivation. Nor do they fare better for fruit, which has even less land (although this is a more complex calculation for fruit trees, less so for vine fruits).
Third, 125,000 hectares to wheat and 71,000 hectares to jowar makes up almost the entire cereals cultivation. Likewise 126,000 hectares to tur (or arhar) and 94,000 hectares to gram accounts for most of the land allocated to pulses. Thus while Yavatmal’s talukas are well supplied with wheat, jowar, gram and tur dal, its households must depend on neighbouring (or not so neighbouring) districts for vegetables, as a minimum of 280,000 tons per year is to be supplied to meet each household’s recommended dietary needs.
What the graphic helps us ask is the size of the costs associated with crop cultivation choices in Yavatmal. The cultivation of hybrid cotton in India’s major cotton growing regions (several districts each in Maharashtra, Andhra Pradesh and Gujarat) is associated with heavy chemical fertiliser and pesticides use. Whether the soil on which cotton has grown can be sown again with a food crop is not clear from the available data but if so such a crop would be saturated with a vicious mix of chemicals that include nitrates and phosphates.
The health of the soil in Yavatmal’s 16 talukas is probably amongst the most fragile in Deccan Maharashtra, and after years of coaxing a false ‘productivity’ out of the ground for cotton, it would be best for the district’s 516,000 rural households to take a cotton ‘holiday’ for three to four years and revert to the mixed and integrated cropping of their forefathers (small millets). But the grip of the financiers and the textiles intermediaries is strong.
The drying of the Deccan
This panel of 12 images shows the change that takes place in a region of the Deccan. Each image shows what is called a Normalised Difference Vegetation Index (NDVI) for the region. This is a rolling eight-day series computed daily using imagery from the Terra/MODIS system and viewed using the NASA Worldview website.
The colours (green and brown shades, whitish shades) show us the vegetation health with deep green being better than light green, dark brown being better than light brown. The index is also used to signal where areas are beginning to experience arid and water-scarce conditions.
The region is the west-central Deccan – the Karnataka Plateau – corresponds to the Vijayapur (Bijapur) district of north Karnataka with parts of Bagalkot district and is part of the central Indian semi-arid bioclimatic zone.
The pictures in the panel show the vegetation extent and health (NDVI) calculated on that day for an eight-day period. Each picture is a fortnight apart, and this series starts on 4 November 2016 (bottom right) and ends on 7 April 2017 (top left). The retreat of the green is seen clearly from one fortnight to the next.
Of interest in this region is the Almatti dam and reservoir, in the Krishna river basin, which is visible in the lower centre of each picture. On 13 April there was no water in Almatti, which has a full capacity of 3.105 billion cubic metres (bcm). For the week ending 30 March it had 0.015 bcm of water, the week ending 6 April 0.001 bcm.
For the week ending 3 November 2016, which is when the panel of pictures begins, Almatti had 2.588 bcm of water. The reservoir water runs a hydroelectric power plant, of 240 MW, and which needs flowing water to turn the turbines.
When the reservoir is full, the hydel plant produces about 175 million units of electricity. But on 13 March the Central Electricity Authority’s daily report showed that Almatti could produce only 3.02 million units. On 10 April, this had plunged to 0.04 million units, but the hydel plant had produced no power since 1 April.
Villages in their splendid talukas
As part of my continuing and long term study on the relation between populations both rural and urban, the land base upon which they depend for the growing of food, and the socio-economic changes taking place in our districts, I have begin an examination of how households are distributed in administrative regions, that is, districts and talukas. This graphed plot describes one kind of finding. (Click here for a full size plot that lets you explore each data point.)
States are administratively divided into districts (earlier the concept of a ‘division’, which was a group of districts, was more common – the ‘division’ is still used, for revenue determination but also for home affairs) and these are divided into talukas. How many talukas does the typical district have? Some have four, others as many as 12. There are talukas whose households are entirely rural as there is not a single census town, let alone a municipal council, within its precincts. The taluka contains villages and these can be numerous. Some talukas may have 50-60 villages whereas others may have 200 and more.
It is always an interesting matter to ponder. How did households in a small sub-region – at the confluence of a stream and a river for example or at the edge of a plain and at the margins of hills – become villages and what determined the distribution of such hamlets in a very local habitat? The factors were always environmental and there was often a strong cultural reason, such as proximity to a sacred site, a mandir or a venerated shrine, historical sites (such as those mentioned in the Ramayana and documented in detail thereafter in numerous local commentaries).
From the set of districts analysed so far a few guiding figures have emerged. The number of rural households in a taluka varies from 7,200 to 96,800; the number of villages in a taluka varies from 28 to 338; the average number of households in a village is 330; there is one urban household for every 3 rural households.
Where the agro-ecological conditions are favourable, there is to be found a denser gathering of villages and these will have larger populations. This can easily be understood. It is less clear how the toil of the households accommodated in a large number of villages are required to maintain, in many ways, urban households which are now clustered in a town or two of the same taluka. This dependence is what a study of not only the rural-urban population, but also how it is distributed within agro-ecological boundaries, can help uncover. The graphed plot included here is one step towards that understanding.
How a district employs land and crop

A plotting of the cropland size categories with the number of holdings for the district of Hingoli in Maharashtra. The central group of rectangles displays the distribution, relative to each other, of the size categories of holdings (in hectares, ha.). The blue squares, also relative to each other, displays the number of holdings for each farm size category. The data source is the Agricultural Census 2010-11.
In the district of Hingoli, Maharashtra, the allocation of cultivated land between food crops and non-food crops is somewhat in favour of non-food crops. That is, for every hectare planted with a food crop 1.3 hectares is planted with a non-food crop. The broad categories we have under food crops are: cereals, pulses, vegetables and fruit. Under non-food crops there are: oilseeds, sugarcane, fibres, spices and fodder.

Where Hingoli district is in Maharashtra state.
The Agricultural Census 2010-11 detailed data for Hingoli shows that at the time of the survey 493,927 hectares were under cultivation for all kinds of crops, both food and non-food. As this is a count of how much land was under cultivation by crop, the total land under cultivation for all crops taken together is more than the total land under cultivation when measured according to land use. This is so because of crop rotation during the same agricultural year, inter-cropping and mixed cropping – for a plot, the same land may raise two kinds of crops in a year.

Size categories of farm holdings, with number of holdings and total area under each category for Hingoli district, Maharashtra.
The 493,927 hectares under cultivation in Hingoli are divided under 213,286 hectares for food crops and 280,640 hectares under non-food crops. This gives us the overall picture that the farming households of Hingoli choose to give more land for crop types under the ‘non-food’ category. As the settlement pattern of Hingoli is very largely rural – that means, few towns and these are the district headquarters and two more taluka centres – do the farming households of Hingoli grow enough to feed themselves comfortably? Do the farming households have the labour needed to continue cultivating so that they can feed themselves and their village communities? How are choices relating to land use and crop made?
Using the publicly available information from a variety of government sources, we are able to find parts of answers. The Agricultural Census 2010-11 is one such source, the Census of India 2011 is another, so are the tables provided by the Department of Economics and Statistics of the Ministry of Agriculture. The graphical representation I have prepared here helps provide the land use basis upon which to layer the district information from other sources.
Regions of wheat, lands of rice
The return of budgetary focus towards agriculture and the economies of rural India will help deepen our understanding about where crops are grown and for whom. These are still more often described in national aggregate terms of annual estimates, than by season, state and the growing appetites of urban agglomerations.
This could change over the next few years, especially as the so-called services sector shrinks both by the number of people it employs and by its importance to the national economy. Services – a peculiarly invented term that was quite unknown and unused when I was a teenager – has come about because of the financialisation of those portions of social activity which were done at small scale, informally and as adjunct activities to the work of the public sector, the manufacturers and factories, and the great numbers of cultivators (and those working on agricultural produce). The many enforced errors of contemporary economics means that this will continue to change – not without pain and confusion – but that social activity that has some economic dimension will return to what it was two generations earlier.
While it does, we find there are differences in the concentration of food staples produced – that is, how much by quantity do certain regions grow our food staples as a significant fraction of national production of that food staple. This is more readily available as state quantities instead of district. I have suggested to the Ministry of Agriculture that this ought to be monitored not only at the level of the district but also by the agro-ecological zone, or region, for we have 120 in India, and they represent varying climatic conditions, soil typologies, river basins and cultivation systems.
At present, what we see then is that for rice and wheat, the top three producing states account for 36.7% (rice) and 62% (wheat) of the country’s production. This distribution – or concentration – should cause a review of the crop choices that our kisans make in the growing districts and agro-ecological zones. For a simple pointer such as this tells us that 37 out of every 100 quintals of rice grown in India are grown in West Bengal, Uttar Pradesh and Andhra Pradesh and that 62 out of every 100 quintals of wheat grown in India are grown in Uttar Pradesh, Punjab and Madhya Pradesh.
The corresponding distribution/concentration with coarse cereals is better than wheat but not better than rice for 45.4% of total coarse cereals are grown in Rajasthan, Karnataka and Andhra Pradesh. Likewise, 48.8% of all pulses are grown in Madhya Pradesh, Rajasthan and Maharashtra. The tale is similar with oilseeds (63.8% in Madhya Pradesh, Rajasthan and Gujarat), with sugarcane (73% in Uttar Pradesh, Maharashtra and Karnataka) and cotton (69.8% in Gujarat, Maharashtra and Andhra Pradesh).
With horticulture – that is, vegetables and fruit – there is less state-level concentration to be seen. India’s kisans grow about 170 million tons of vegetables and about 85 million tons of fruit a year and their concentrations vary – West Bengal and Odisha grow a great deal of brinjal, Maharashtra grows onions, Uttar Pradesh and West Bengal lead in potatoes, Madhya Pradesh and Karnataka grow the most tomatoes, and so on. Overall however, the range of distribution amongst the large states of their produce of vegetables and fruit is not as concentrated as with the food staples. The reasons for this difference can tell us a great deal about the need for district and watershed-level food security, employing as always sound zero budget farming techniques (no external inputs) and local and indigenous knowledge of cultivation techniques.
Between Berar and Nizam, a taluka in Maharashtra
This is a small taluka in Vidarbha, Maharashtra. To the north, not far away, and visible on the horizon, is the line of hills called the Sahyadriparbat, which is also called the Ajanta range after the site with the remarkable frescoes.
Also due north is the city of Akola, and a little farther away north-east is Amravati, named after Amba whose ancient temple the old city, with more than 900 years of recorded history, is built around. To the west, in a nearly direct line west, is Aurangabad. To the south had stretched, not all that long ago, the dominions of the Nizam of Hyderabad, to which this little taluka had once belonged.
Sengaon is the name of this taluka (an administrative unit unimaginatively called a ‘block’ by the administrative services, elsewhere a tehsil or a mandal) and today it is one of five talukas of the district of Hingoli, which itself is only very recent, for before 1999 it was a part of the district of Parbhani. But Hingoli town is an old one – its cantonment (old bungalows, large compounds) was where the defenders of this part of the Nizam’s northern dominions resided (over the frontier had been Berar), and there was a large and thriving market yard here, as much for the cotton as for the jowar.
The villages of Sengaon are mostly small and agricultural, which is how the entire district was described in the district gazetteer of the 1960s. There are today 128 inhabited villages in this little taluka, and this chart (click it for a full size version, data from Census 2011) shows how their populations depend almost entirely on agriculture – for the group of villages, 92% of all those working do so in the fields, whether their village is as small as Borkhadi or Hudi, or as large as Sakhara or Palshi.
There were Bhois here (and still are), the fishermen and one-time litter-bearers, there are ‘deshastha‘ Maratha Brahmins, there are ‘Karhada‘ who take their name from Karhad, the sacred junction of the Koyna and the Krishna in Satara district, there are the former leather-workers and rope-makers called the ‘Kambhar‘, there are the weavers who are the ‘Devang‘ (with their four sub-divisions, and themselves a division of the great Dhangars or shepherds), there are the ‘Virasaiva‘ or the ‘Shivabhakta‘ or the ‘Shivachar‘ (all Lingayats) who have for generations been traders and agriculturists.
There are the ‘Pata Jangam‘ still who must lead a celibate life and could be distinguished by the long loose roseate shirts they wore and who spent their days in meditation and prayer, there were the ‘Mali‘ the fruit and vegetable growers the gardeners and cultivators (and in times past their society was divided according to what they grew so the ‘phool Mali‘ for flower the ‘jire Mali‘ for cumin seed and the ‘halade Mali‘ for turmeric), and there are the Maratha – the chief warriors, land owners and cultivators – and the 96 families to which they belong, there are Maheshvari Marwaris, the ‘suryavanshi‘ or ‘chandravanshi‘ Rajputs, the Lambadi who at one time were grain and* salt carriers but also cattle breeders and graziers, and the ‘Vadar‘ or stone and earth workers.
This is who they are and were in the taluka of Sengaon, beyond and away from the dry and terse descriptions contained on government beneficiaries lists and drought relief programmes. They know well their trees in the expansive grasslands of the north Deccan – the Indian bael, the ‘daura‘ or ‘dhamora‘ tree, the ‘saalayi‘ whose bark and gum resin treats all sorts of ailments, the ‘madhuca‘ or mahua, the amalaki – and do their best to protect them; the twigs and sticks that fuel their ‘chulhas’ are those which fall to the earth.
It is a small taluka but old, like the others in the ancient north Deccan, and in Marathi, some of the elders of the villages here explain, with great embellishment and pomp, how the Brihat Samhita contains detailed instructions of what to plant on the embankments of a water tank, especially the madhuca, which they will add could be found in villages whose names they all know well: Pardi, Shivni, Karegaon, Barda, Sawarkheda, Suldali, Kawardadi, Datada, Jamthi, Sabalkheda …
Water and a district in Maharashtra
In this panel of maps the relationship between the district of Parbhani (in the Marathwada region of Maharashtra) and water is graphically depicted over time. The blue squares are water bodies, as seen by a satellite equipped to do so. The intensity of the blue colour denotes how much water is standing in that coloured square by volume – the deeper the blue, the more the water.
Water bodies consist of all surface water bodies and these are: reservoirs, irrigation tanks, lakes, ponds, and rivers or streams. There will be variation in the spatial dimensions of these water bodies depending on how much rainfall the district has recorded, and how the collected water has been used during the season and year. In addition to these surface water bodies, there are other areas representing water surface that may appear, such as due to flood inundations, depressions in flood plains, standing water in rice crop areas during transplantation stages. Other than medium and large reservoirs, these water features are treated as seasonal and some may exist for only a few weeks.
The importance of monitoring water collection and use at this scale can be illustrated through a very brief outline of Parbhani. The district has 830 inhabited villages distributed through nine tehsils that together occupy 6,214 square kilometres, eight towns, 359,784 households in which a population of 1.83 million live (1.26 rural and 0.56 million urban). This population includes 317,000 agricultural labourers and 295,000 cultivators – thus water use and rainfall is of very great importance for this district, and indeed for the many like it all over India.

The map of Parbhani district and its talukas, from the Census 2011 District Census Handbook.
This water bodies map for Parbhani district is composed of 18 panels that are identical spatially – that is, centred on the district – and display the chronological progression of water accumulation or withdrawal. Each panel is a 15-day period, and the series of mapped fortnights begins on 1 January 2015.
The panels tell us that there are periods before the typical monsoon season (1 June to 30 September) when the accumulation of water in surface water bodies has been more than those 15-day periods found during the monsoon season. See in particular the first and second fortnights of March, and the first fortnight of April. [Here is a good quality image of the census map, 968KB.]
During the monsoon months, it is only the two fortnights of June in which the accumulation of water in the surface water bodies of Parbhani district can be seen. The first half of July and the second half of August in particular have been recorded as relatively dry.
This small demonstration of the value of such information, provided at no cost and placed in the public domain, is based on the programme ‘Satellite derived Information on Water Bodies Area (WBA) and Water Bodies Fraction (WBF)’ which is provided by the National Remote Sensing Centre (NRSC), Indian Space Research Organisation (ISRO), Department of Space, Government of India.
For any of our districts, such continuous monitoring is an invaluable aid to: facilitate the study of water surface dynamics in river basins and watersheds; analyse the relationships between regional rainfall scenarios and the collection and utilisation of water in major, medium reservoirs and irrigation tanks and ponds; inventory, map and administer the use of surface water area at frequent intervals, especially during the crop calendar applicable to district and agro-ecological zones. [Also posted on India Climate Portal.]
Three months of swinging Celsius
The middle of February is when the chill begins to abate. The middle of May is when the monsoon is longed for. In our towns, district headquarters and cities, that climatic journey of 90 days is one of a steady rise in the reading of the temperature gauge, from the low 20s to the mid 30s.
This large panel of 90 days of daily average temperatures shows, in 57 ways, the effects of the rains that almost every district has experienced during the last two months. For each city, the curved line is the long period ‘normal’ for these 90 days, based on daily averages. Also for each city, the second line which swings above and below the ‘normal’ is the one that describes the changes in its daily average from February to May 2015.
[You can download (1.52MB) a full resolution image of the panel here.]
Where this second line crosses to rise above the normal, the intervening space is red, where it dips below is coloured blue. The patches of red or blue are what tell us about the effects of a lingering winter, or rains that have been called ‘unseasonal’ but which we think signal a shift in the monsoon patterns.

The 90-day temperature chart for Goa, with daily averages nearer the long period normal over the latter half.
Amongst the readings there is to be found some general similarities and also some individual peculiarities. Overall, there are more blue patches than there are red ones, and that describes how most of the cities in this panel have escaped (till this point) the typical heat of April and May. The second noteworthy general finding is that these blue patches occur more frequently in the second half of the 90 days, and so are the result of the rainy spells experienced from March to early May.
Hisar (in Haryana) has remained under the normal temperature line for many more days than above or near it. So have Gorakhpur (Uttar Pradesh), Pendra (Chhattisgarh), Ranchi (Jharkhand), Nagpur (Maharashtra) and Jharsuguda (Odisha).
On the other hand in peninsular and south India, the below ‘normal’ daily average temperature readings are to be found in the latter half of the time period, coinciding with the frequent wet spells. This we can see in Kakinada, Kurnool and Anantapur (Andhra Pradesh), Bangalore, Gadag and Mangalore (Karnataka), Chennai, Cuddalore and Tiruchirapalli (Tamil Nadu) and Thiruvananthapuram (Kerala). [A zip file with the charts for all 57 cities is available here (1.2MB).]
What pattern will the next 30 days worth of temperature readings follow? In four weeks we will update this bird’s eye view of city temperatures, by which time monsoon 2015 should continue to give us more blues than reds. [Temperature time series plots are courtesy the NOAA Center for Weather and Climate Prediction.]