Resources Research

Culture and systems of knowledge, cultivation and food, population and consumption

Posts Tagged ‘energy access

Energy, climate, growth, China, India – the World Energy Outlook 2012

leave a comment »

Inputs to the power sector to generate electricity accounted for 38% of global primary energy use in 2010, the single largest element of primary demand. In the New Policies Scenario, this share rises to 42% in 2035. Demand for electricity is pushed higher by population and economic growth, and by households and industries switching from traditional biomass, coal, oil and natural gas to electricity. The fuel mix within the power sector changes considerably, with low- and zero-carbon technologies becoming increasingly important. Graphic: IEA, WEO-2012

In four parts, 18 chapters, four annexes, illustrated by around 300 figures, the chapters supported by about 100 tables, a separate set of data upon which scenarios rest, the World Energy Outlook 2012 of the International Energy Agency (IEA) is a 690-page behemoth. I can only sketch its merest outline here, and in a fleeting way touch upon the knowledge and information it contains.

Drawing on the latest data and policy developments, the World Energy Outlook 2012 presents projections of energy trends through to 2035 and insights into what they mean for energy security, the environment and economic development. “Over the Outlook period, the interaction of many different factors will drive the evolution of energy markets,” said the WEO-2012. “As outcomes are hard to predict with accuracy, the report presents several different scenarios, which are differentiated primarily by their underlying assumptions about government policies.” We are told that the starting year of the scenarios is 2010, the latest year for which comprehensive historical energy data for all countries were available. What are these four scenarios?

Based on preliminary estimates, energy-related CO2 emissions reached a record 31.2 gigatonnes (Gt) in 2011, representing by far the largest source (around 60%) of global greenhouse-gas emissions (measured on a CO2-equivalent basis). Emissions continue to rise in the New Policies Scenario, putting the world on a path that is consistent with a long-term average global temperature increase of 3.6 °C above levels that prevailed at the start of the industrial era. Chart: IEA, WEO-2012

1. The New Policies Scenario – the report’s central scenario – takes into account broad policy commitments and plans that have already been implemented to address energy-related challenges as well as those that have been announced, even where the specific measures to implement these commitments have yet to be introduced.

2. To illustrate the outcome of our current course, if unchanged, the Current Policies Scenario embodies the effects of only those government policies and measures that had been enacted or adopted by mid-2012.

3. The basis of the 450 Scenario is different. Rather than being a projection based on past trends, modified by known policy actions, it deliberately selects a plausible energy pathway. The pathway chosen is consistent with actions having around a 50% chance of meeting the goal of limiting the global increase in average temperature to two degrees Celsius (2°C) in the long term, compared with pre-industrial levels.

4. The Efficient World Scenario has been developed especially for the World Energy Outlook 2012 (WEO-2012). It enables us to quantify the implications for the economy, the environment and energy security of a major step change in energy efficiency.

In the New Policies Scenario, global energy intensity (energy demand per unit of GDP) falls by 1.8% per year between 2010 and 2035. Between 2010 and 2035, energy intensity declines by an average of 37% and 49% in OECD and non-OECD countries respectively. Yet average energy intensity in non-OCED countries in 2035 of 0.16 tonnes of oil equivalent (toe) per thousand dollars of GDP is still more than twice the OECD level. Chart: IEA, WEO-2012

I have extracted five important messages from the summary which are connected to the subjects you find in this blog – food and agriculture, consumer behaviour and its impacts on our lives, the uses that scarce energy is put to, the uses that scarce water is put to, the ways in which governments and societies (very different, these two) view food, energy and water.

Five key messages:
“Energy efficiency can keep the door to 2°C open for just a bit longer.” Successive editions of the World Energy Outlook have shown that the climate goal of limiting warming to 2°C is becoming more difficult and more costly with each year that passes. The 450 Scenario examines the actions necessary to achieve this goal and finds that almost four-fifths of the CO2 emissions allowable by 2035 are already locked-in by existing power plants, factories, buildings, etc. No more than one-third of proven reserves of fossil fuels can be consumed prior to 2050 if the world is to achieve the 2°C goal.

“Will coal remain a fuel of choice?” Coal has met nearly half of the rise in global energy demand over the last decade, growing faster even than total renewables. Whether coal demand carries on rising strongly or changes course will depend on the strength of policy measures that favour lower-emissions energy sources, the deployment of more efficient coal-burning technologies and, especially important in the longer term, CCS. The policy decisions carrying the most weight for the global coal balance will be taken in Beijing and New Delhi – China and India account for almost three-quarters of projected non-OECD coal demand growth (OECD coal use declines).

China makes a major contribution to the increase in primary demand for all fuels: oil (54%), coal (49%), natural gas (27%), nuclear power (57%) and renewables (14%). Its reliance on coal declines from 66% of the country’s primary energy use in 2010 to 51% in 2035. Energy use in India, which recently overtook Russia to become the world’s third-largest energy consumer, more than doubles over the Outlook period. India makes the second-largest contribution to the increase in global demand after China. Chart: IEA, WEO-2012

“If nuclear falls back, what takes its place?” The anticipated role of nuclear power has been scaled back as countries have reviewed policies in the wake of the 2011 accident at the Fukushima Daiichi nuclear power station. Japan and France have recently joined the countries with intentions to reduce their use of nuclear power, while its competitiveness in the United States and Canada is being challenged by relatively cheap natural gas. The report’s projections for growth in installed nuclear capacity are lower than in last year’s Outlook and, while nuclear output still grows in absolute terms (driven by expanded generation in China, Korea, India and Russia), its share in the global electricity mix falls slightly over time.

“A continuing focus on the goal of universal energy access.” Despite progress in the past year, nearly 1.3 billion people remain without access to electricity and 2.6 billion do not have access to clean cooking facilities. Ten countries – four in developing Asia and six in sub-Saharan Africa – account for two-thirds of those people without electricity and just three countries – India, China and Bangladesh – account for more than half of those without clean cooking facilities. The report presents an Energy Development Index (EDI) for 80 countries, to aid policy makers in tracking progress towards providing modern energy access. The EDI is a composite index that measures a country’s energy development at the household and community level.

“Energy is becoming a thirstier resource.” Water needs for energy production are set to grow at twice the rate of energy demand. The report estimates that water withdrawals for energy production in 2010 were 583 billion cubic metres (bcm). Of that, water consumption – the volume withdrawn but not returned to its source – was 66 bcm. The projected rise in water consumption of 85% over the period to 2035 reflects a move towards more water-intensive power generation and expanding output of biofuels.

Such is the barest glimpse of the WEO-2012. There are a number of aspects of the Outlook which deserve more scrutiny with a view to learning energy use and misuse, and this will be expanded upon in the weeks ahead.

By lanternlight in rural Asia

with one comment

The Shivalaya Bazaar, Kanpur, Uttar Pradesh, India

One of the magazines of the CR Media group of Singapore interviewed me about energy needs in rural Asia. My responses to some thoughtful questions have been published, although I don’t have a link yet to any of the material online. Until then, here’s a selection of questions and replies.

Do you have a case study or know of an innovative instance when an Asian country has broken the mould successfully in generating energy for its citizens in a way that is remarkable?

When you travel in rural South Asia you see that in almost every unelectrified village there is a flourishing local trade in kerosene and kerosene lanterns for lighting, car batteries and battery-charging stations for small TV sets, dry cell batteries for radios, diesel fuel and diesel generator sets for shops and small businesses and appliances. It’s common to spot people carrying jerricans or bottles of kerosene from the local shop, or a battery strapped to the back of a bicycle, being taken to the nearest charging station several kilometres away. People want the benefits that electricity can bring and will go out of their way, and spend relatively large amounts of their income, to get it. That represents the opportunity of providing power for energy appliances at the household level (LED lamps, cookstoves, solar- and human-powered products) and of community-level power generation systems (village bio-gasification, solar and small-scale hydro and wind power).

Household income and electricity access in developing countries, IEA, World Energy Outlook 2010

Household income and electricity access in developing countries, IEA, World Energy Outlook 2010

In areas such as western China, the South American rainforest or the Himalayan foothills, the cost of a rural connection can be seven times that in the cities. Solar power has spread rapidly among off-grid communities in developing countries, only sometimes subsidised. A typical solar home system today in South Asia provides light, power for TVs, radios and CD players, and most important charges mobile phones. At US$ 400-500, such a system is not cheap for rural Asia, especially when households are struggling with rising food and transport costs. But targeted subsidies and cheap micro-credit has made this energy option more affordable.

How can Asian countries cooperate to bring a new energy reality into Asia and balance development with conservation?

Let’s see what some authoritative forecasts say. The Sustainable World Energy Outlook 2010 from Greenpeace makes projections of renewable energy generation capacity in 2020: India 146 GW, developing Asia 133 GW, China 456 GW. These are enormous quantities that are being forecast and illustrate what has begun to be called the continental shift eastwards of generation and power. India dwarfs developing Asia the way China dwarfs India – the conventional economies today reflect this difference in scale. It’s important to keep in mind, while talking about energy, that Asia’s committed investment and planned expansion is centred to a very great degree around fossil fuel.

Factory and high-tension power lines, Mumbai, India

Certainly there are models of regional cooperation in other areas from where lessons can be drawn, the Mekong basin water sharing is a prominent example. But cooperation in energy is a difficult matter as it is such an essential factor of national GDP, which has become the paramount indicator for East and South Asia. Conversely, it is because the renewables sector is still relatively so small in Asia that technical cooperation is flourishing – markets are distributed and small, technologies must be simple and low-cost to be attractive, and business margins are small, all of which encourage cooperation rather than competition.

What could be immediately done to help alleviate energy shortage in South Asia for the masses, at a low cost? Do you have a case study of this?

Let’s look at Husk Power Systems which uses biomass gasification technology to convert rice husk into gas. Burning this gas runs generators which produce relatively clean electricity at affordable rates. Rice husk is found throughout northern, central and southern India and is a plentiful fuel. While Husk Power says that the rice husk would otherwise be “left to rot in fields” that isn’t quite true, as crop biomass is used in many ways in rural South Asia, but the point here is that this entrepreneurial small company has successfully converted this into energy for use locally.

Household income and access to modern fuels in developing countries, IEA, World Energy Outlook 2010

Household income and access to modern fuels in developing countries, IEA, World Energy Outlook 2010

I think it’s important that access to energy be seen for its importance in achieving human development goals. Individuals in governments do see this as clearly as you and I, but disagreements over responsibility and zones of influence get in the way. Responsible private enterprise is one answer. If you look at micro-enterprise funders, like Acumen, they recognise that access to electricity is also about healthcare, water and housing, refrigerated vaccines, irrigation pumps and also lighting in homes so that children can study.

What issues (externalities etc) do Asian governments do not factor in when they go for new sources of energy?

The poverty factor has for years obscured many other considerations. Providing energy, infrastructure and jobs has been the focus of central and provincial governments, and in the process issues such as environmental degradation and social justice have often been overlooked. That has been the pattern behind investment in large, national centrally-funded and directed power generation plans and in many ways it continues to shape centralised approaches to renewable energy policy.

Developing Asia is still mired in the legacy bureaucracies that have dominated (and continue to) social sector programmes, which for decades have been the cornerstone of national ‘development’. Energy is still seen as a good to be allocated by the government, even if the government does not produce it. And it still takes precedence over other considerations – ecosystem health, sustainable natural resource management – because of this approach. If India has a huge programme to generate hydroelectricity from the rivers in the Himalaya, there is now ample evidence to show both the alterations to river ecosystems downstream and the drastic impacts of submergence of river valleys, let alone the enormous carbon footprint of constructing a dam and the associated hydropower systems. Yet this is seen as using a ‘renewable’ source of energy.