Resources Research

Making local sense of food, urban growth, population and energy

Posts Tagged ‘climate

Weighing the monsoon winds for El Niño

leave a comment »

Ignoring the torpor of the summer heat, the India Meteorological Department has dusted off the statutory paragraphs that give us in the sub-continent a first indication of what monsoon for the year may be like. The result this year, both scintillating pages, has been made that much more gripping by the inclusion of El Niño. The IMD’s treatment of the normal variables whose interplay determine the nature of any monsoon is perfunctory – which is surprising as the regional and international earth observation networks spare no detail and tend to inundate us with data and analysis.

Clouds and wind, land and farm. The equation that all rural districts make at this time of the year, but which is becoming more difficult with every year that climate change strengthens its grip.

Clouds and wind, land and farm. The equation that all rural districts make at this time of the year, but which is becoming more difficult with every year that climate change strengthens its grip.

But the IMD, especially for the south-west monsoon, has always preferred to be spartan. Perhaps there is some philosophical dictum that us non-meteorologists have yet to grasp, and if so then the only criticism we may be permitted, if the IMD had its way, its to ask for more such teaching. But the IMD does not have its way, and we publics whose monies support its work must continue to demand from the recalcitrant department better, much better, application and communication of its work.

The official release, ‘Long Range Forecast For the 2014 Southwest Monsoon Season Rainfall’, is delivered to us by the IMD, Ministry of Earth Sciences (MoES). There is the usual paragraph claiming a profundity of observation and of the IMD being a standard-bearer of superior method. “Operational models are critically reviewed regularly and further improved through inhouse research activities,” says the IMD. But what we still have, in a tradition that is probably three generations old, is the two stage forecast (one in April, the second in June). [Here is the release in Hindi.]

I think this proves how out of step the IMD – and the Ministry of Earth Sciences (grand title isn’t it?) – is with what citizens of India experience in their villages, towns, fields and hills. For, the south-west monsoon no longer arrives in the first week of June, and it no longer begins to depart by mid-September. Climate change began to alter that comfortable rhythm years ago, but the IMD’s forecasting grindstone is the same, never mind how many new earth observation satellites India pelts into orbit.


With all these provisos, stated and implicit, what has the IMD told us?

First, that the “experimental ensemble forecast based on IMD seasonal forecast model (SFM) indicates that the rainfall during the 2014 monsoon season (June to September) averaged over the country as a whole is likely to be 88% ± 5% of long period average (LPA)”. This means that in places it could be as low as 83% of the average, and no more than 92% of the average. Combine this with the assessments about the 2014 El Niño and we can see why, far from being satisfied that the IMD is considering both the monsoon and El Niño, we ought to monitor independently both and force the IMD to become more responsive.

Second, that “the experimental forecast based on the coupled dynamical model forecasting system suggest that the monsoon rainfall during the 2014 monsoon season (June to September) averaged over the country as a whole is likely to be 96% ± 5% of long period model average (LPMA)”. This is a more hopeful set, but also shows that the IMD, by telling us of two different scenarios from two models, is hedging its forecast, which is not what its job is.

Third, the IMD has said “the experimental five category probability forecasts for the 2014 monsoon season rainfall over the country as a whole using the experimental dynamical prediction system are 33% (deficient), 20% (below normal), 24% (normal), 6% (above normal) and 17% (excess)”. This means, using this ‘probability’, that a normal monsoon for 2014 has only a 1-in-4 chance whereas a deficient monsoon (that is, total rain less than 90% of the long period average) has a 1-in-3 chance.

This is a prognosis that stands between serious and grim, for a 10% drift towards the lower side of an expected average, for any of our 36 agro-meteorological regions, can spell ruin for farmers and severe hardship for water consumers. How have central and state governments prepared for such a forecast? We have no information, most likely because there has been no preparation (there are contingency plans for the chronically drought-prone districts, but these are normally triggered when there is an official declaration by  the state government that there are conditions of drought in parts of the state). Elections or no elections, El Niño cares not, and it is up to the state governments to make preparations for a monsoon 2014 whose delivery of water already looks uncertain.

Preparing for Cyclone Phailin

leave a comment »

RG-Phailin-eastern_India_rain_peak_201310Update4: The water carried over land by Cyclone Phaillin has now travelled northwards and west. Daily monsoon system monitoring by the Centre for Ocean-Land-Atmosphere Studies – COLA (a scientific research centre to improve understanding and prediction of Earth’s climate variations) now show the danger from very heavy rain to districts in interior Odisha, eastern Madhya Pradesh, Chhattisgarh, Jharkhand, Bihar and eastern Uttar Pradesh.

The soil moisture in these regions is already high – as it should be at the end of the south-west monsoon – and very heavy spells of rain approaching 20mm in three hours will cause widespread flooding. The National Disaster Management Authority and the armed forces will continue to have to be on the alert for flood-related rescue calls from these regions.

Update3: It is very worrying to find that:

(a) satellite images shared by a global meteorological community are showing that Cyclone Phailin crossed the Indian coast between 1800 and 1900 (6pm and 7pm) but until well after 1900 (7pm) the Indian Meteorological Department told television news channels it was still approaching, and

The NOAA image dated 12 October 2013 and timed at 1400 UTC which shows the eye of Phailin having crossed the Indian coast in Srikakulam district, Andhra Pradesh.

The NOAA image dated 12 October 2013 and timed at 1400 UTC which shows the eye of Phailin having crossed the Indian coast in Srikakulam district, Andhra Pradesh.

(b) that hourly data from the automated weather stations on the eastern coast are not visible – no explanation as to whether they had been knocked out by the cyclonic conditions or whether the data links were down.

Update2: The armed forces and para-military and disaster relief and rescue teams are reported to be ready. Two Indian Air Force IL-76 aircraft have taken teams and equipment to Bhubaneshwar, Odisha. The Indian Air Force is on stand-by at various bases including Raipur, Nagpur, Jagdalpur, Barrackpore, Ranchi and Gwalior. At least 28 teams of the National Disaster Response Forces have been mobilised.

Fishermen moving fishing boats (above) to safe places following a warning about Phailin cyclone in Srikakulam district. Photo: The Hindu/Basheer. The Phailin data sheet at IST 1100 on the Tropical Storm Risk website (below).

Fishermen moving fishing boats (above) to safe places following a warning about Phailin cyclone in Srikakulam district. Photo: The Hindu/Basheer. The Phailin data sheet at IST 1100 on the Tropical Storm Risk website (below).

The East Coast Railway has cancelled or re-scheduled passenger trains between Visakhapatnam and Bhadrak on the Howrah-Chennai Main Line route, PTI News has reported. Among these trains are Puri-Cuttack-Puri passenger, Paradeep-Cuttack passenger, Cuttack-Paradeep passenger, Puri-Gunupur-Puri passenger, Puri-Rourkela passenger, Puri-Cuttack passenger, Bhadrak-Cuttack-Bhadrak passenger and Cuttack-Palasa-Cuttack passenger trains.

PTI News has reported that Odisha has opened control rooms for the cyclone. The helpline number of the Odisha Central Control Room is 0674-2534177
The district control room numbers are: Mayurbhanj 06792-252759, Jajpur 06728-222648, Gajapati 06815-222943, Dhenkanal 06762-221376, Khurda 06755-220002, Keonjhar 06766-255437, Cuttack 0671-2507842, Ganjam 06811-263978, Puri 06752-223237, Kendrapara 06727-232803, Jagatsinghpur 06724-220368, Balasore 06782-262674, Bhadrak 06784-251881.

In Odisha, 200 trained ham radio operators have been put on alert to help with rescue work. Eight stations have been put on ‘active alert’ while there are 28 stations as back-up around India.

Via Twitter:
Google Person Finder has readied a service in response to cyclone Phailin to help find friends and loved ones (thanks to @GautamGhosh)
Phailin is forecast to strike at IST 1730 (5.30 pm) local time. Trust Foundation has a status page (thanks to @nitabhalla)

Also consult the Tropical Storm Risk site for frequent updates on the course and strength of Phailin.

Update1: For those in coastal Odisha and Andhra Pradesh, check TV and radio broadcasts for weather alerts and conditions in your district for as long as there is electricity. The government weather websites – India Meteorological Department and Mausam – have become very unresponsive probably due to high traffic.

Use the #Phailin hashtag on Twitter to find news and alerts near where you are. See useful examples like these:
Odisha Control Room numbers: Ganjam 06811-263978; Puri 06752-223237; Kendrapara 06727-232803 (thanks for this info to @aditya_manocha )
@debasis3: “Here we go. Rains have started in Bhubaneswar”
More Odisha Control Room numbers: Balasore 06782-262674; Bhadrak 06784-251881; Mayurbhanj 06792-252759; Jajpur 06728-222648 (thanks for this info to @ketan72 )

A new map of Phailin and its possible pathways from the Global Disaster Alert and Coordination System (GDACS)

A new map of Phailin and its possible pathways from the Global Disaster Alert and Coordination System (GDACS)

Important advice from the National Disaster Management Authority of India – If you are in the cyclone danger zone: check the house; secure loose tiles. remove dead wood or dry branches close to the house. Anchor movable objects like piles of wood, tin sheets (these are deadly when sent flying during a cyclone), loose bricks, rubbish bins (whose lids can fly like dangerous missiles in high wind), unbolted sign-boards.

Keep a few wooden boards, nails and a hammer ready to board up glass windows if they are in danger of shattering inwards. Keep emergency lighting ready. Ensure mobile phones are charged. Keep battery-operated torches ready batteries handy. Store boiled or filtered water for drinking. Keep dry food (such as biscuits) at hand if conditions worsen and you can’t cook a hot meal.

Zee News (television and online) has reported that in Odisha “thousands flee to shelter homes stocked with emergency food supplies and medicines”. National Disaster Response Force (NDRF) teams have reached Bhubaneswar (capital of Odisha) as evacuations have begun in Odisha and north Andhra Pradesh. Union Defence Minister A K Antony has asked armed forces to be ready to move in to Odisha and Andhra Pradesh.

NDTV (television and online) has reported that five districts “are preparing for the worst impact of the cyclone: Srikakulam in Andhra Pradesh and Ganjam, Puri, Khordha and Jagatsinghapur in Odisha.” Helicopters and food packages are ready for areas that are likely to be worst hit. A minister in the Andhra Pradesh state government has reportedly said that 64,000 people are being evacuated from Srikakulam, Vishakhapatnam and Vizianagaram and are being shifted to cyclone shelters.

The forecast six-day path of cyclone Phailin.

The forecast six-day path of cyclone Phailin.

The state of Odisha is preparing for Cyclone Phailin as it approaches from the Bay of Bengal. Consult the new map of Phailin and its possible pathways from the Global Disaster Alert and Coordination System (GDACS).

My reading of the forecast path of the cyclone – using the map sets from the National Centre for Medium Range Weather Forecasting (Earth System Science Organisation, Ministry of Earth Sciences) – is that in Odisha the districts of Ganjam, Puri, Jagatsinghpur, Kendrapara, Bhadrak, Baleshwar, Kordha, Jajapur, Cuttack, Nayagarh and Gajapati will be in the cyclone’s path beginning with increasingly heavy rain and fierce winds from Saturday morning 12 October 2013; in Andhra Pradesh the districts of Srikakulam, Vizianagaram and Visakhapatnam and in West Bengal the districts of Purba Medinipur will be in the cyclone’s path.

RG-Cyclone_Phailin_day3_sectionThe series of stacked rainfall forecast maps above show the approach of Cyclone Phailin from 11 October.

Look for the deep blue circle in the left panel from the first pair (top left, 24 hours) – extending out ahead of the cyclone core is the rain storm, which will cross the northern coast of Andhra Pradesh. In the second pair (top middle, 48 hours), the blue circle has moved closer to the coast – rainfall from the vast gyre of clouds around the approaching cyclone will extend far inland, in a great spike through Andhra Pradesh, parts of Madhya Pradesh and north into western Uttar Pradesh.

In the third pair (top right, 72 hours), the cyclone has made landfall with Odisha in the centre and affected districts in Andhra Pradesh to the south and West Bengal to the north – this is when the disaster management teams in the districts will be taxed to the utmost, having already been battered by heavy rain and unrelenting high-speed winds for two days.

RG-cyclone_districts_20131011In the fourth pair (lower left, 96 hours) the cyclone is still very active as it moves north-west to sweep across Odisha. In the fifth pair (lower middle, 120 hours) the cyclone core has finally weakened (no longer coloured deep blue) but has moved into Jharkhand, Bihar, West Bengal and eastern Uttar Pradesh. In the sixth pair (lower right, 144 hours) the cyclone’s force has dissipated leaving rain in its wake across eastern India.

Orissa Dairy has reported (‘Phailin upgraded to super cyclone’): “The very severe cyclonic storm Phailin, expected to make landfall at Gopalpur in Odisha, moved closer to the state and lay about 600 km southeast of Paradip, as the government sought the help of defence forces to boost its preparedness, official sources said on Thursday night.”

RG-Cyclone_Phailin_day4_sectionThe Hindustan Times has reported (‘Cyclone Phailin: deep depression over Bay of Bengal intensifies further’): “A morning bulletin of Bhubaneswar meteorological department on Friday said the cyclone would move north-westward and cross Andhra Pradesh and Odisha coast between Kalingapatam (Andhra Pradesh) and Paradip, close to Gopalpur, by Saturday evening as a very severe cyclonic storm with a maximum sustained speed of 205-215km per hour.”

DNA has reported (‘Odisha braces for Cyclone Phailin’): “The state government said it was making adequate preparation to deal with the disaster that expects to cause large scale devastation mostly in state’s coastal southern districts. Durga puja festivities in Odisha have been cancelled as the state prepares for Cyclone Phailin which could be the worst since 1999 when 10,000 people died. The Air Force, Navy and national disaster management team have already been put on stand-by, while the rapid action force has deployed its forces on the ground. People in the low lying areas of the state will be evacuated by Saturday evening.”

Energy, climate, growth, China, India – the World Energy Outlook 2012

leave a comment »

Inputs to the power sector to generate electricity accounted for 38% of global primary energy use in 2010, the single largest element of primary demand. In the New Policies Scenario, this share rises to 42% in 2035. Demand for electricity is pushed higher by population and economic growth, and by households and industries switching from traditional biomass, coal, oil and natural gas to electricity. The fuel mix within the power sector changes considerably, with low- and zero-carbon technologies becoming increasingly important. Graphic: IEA, WEO-2012

In four parts, 18 chapters, four annexes, illustrated by around 300 figures, the chapters supported by about 100 tables, a separate set of data upon which scenarios rest, the World Energy Outlook 2012 of the International Energy Agency (IEA) is a 690-page behemoth. I can only sketch its merest outline here, and in a fleeting way touch upon the knowledge and information it contains.

Drawing on the latest data and policy developments, the World Energy Outlook 2012 presents projections of energy trends through to 2035 and insights into what they mean for energy security, the environment and economic development. “Over the Outlook period, the interaction of many different factors will drive the evolution of energy markets,” said the WEO-2012. “As outcomes are hard to predict with accuracy, the report presents several different scenarios, which are differentiated primarily by their underlying assumptions about government policies.” We are told that the starting year of the scenarios is 2010, the latest year for which comprehensive historical energy data for all countries were available. What are these four scenarios?

Based on preliminary estimates, energy-related CO2 emissions reached a record 31.2 gigatonnes (Gt) in 2011, representing by far the largest source (around 60%) of global greenhouse-gas emissions (measured on a CO2-equivalent basis). Emissions continue to rise in the New Policies Scenario, putting the world on a path that is consistent with a long-term average global temperature increase of 3.6 °C above levels that prevailed at the start of the industrial era. Chart: IEA, WEO-2012

1. The New Policies Scenario – the report’s central scenario – takes into account broad policy commitments and plans that have already been implemented to address energy-related challenges as well as those that have been announced, even where the specific measures to implement these commitments have yet to be introduced.

2. To illustrate the outcome of our current course, if unchanged, the Current Policies Scenario embodies the effects of only those government policies and measures that had been enacted or adopted by mid-2012.

3. The basis of the 450 Scenario is different. Rather than being a projection based on past trends, modified by known policy actions, it deliberately selects a plausible energy pathway. The pathway chosen is consistent with actions having around a 50% chance of meeting the goal of limiting the global increase in average temperature to two degrees Celsius (2°C) in the long term, compared with pre-industrial levels.

4. The Efficient World Scenario has been developed especially for the World Energy Outlook 2012 (WEO-2012). It enables us to quantify the implications for the economy, the environment and energy security of a major step change in energy efficiency.

In the New Policies Scenario, global energy intensity (energy demand per unit of GDP) falls by 1.8% per year between 2010 and 2035. Between 2010 and 2035, energy intensity declines by an average of 37% and 49% in OECD and non-OECD countries respectively. Yet average energy intensity in non-OCED countries in 2035 of 0.16 tonnes of oil equivalent (toe) per thousand dollars of GDP is still more than twice the OECD level. Chart: IEA, WEO-2012

I have extracted five important messages from the summary which are connected to the subjects you find in this blog – food and agriculture, consumer behaviour and its impacts on our lives, the uses that scarce energy is put to, the uses that scarce water is put to, the ways in which governments and societies (very different, these two) view food, energy and water.

Five key messages:
“Energy efficiency can keep the door to 2°C open for just a bit longer.” Successive editions of the World Energy Outlook have shown that the climate goal of limiting warming to 2°C is becoming more difficult and more costly with each year that passes. The 450 Scenario examines the actions necessary to achieve this goal and finds that almost four-fifths of the CO2 emissions allowable by 2035 are already locked-in by existing power plants, factories, buildings, etc. No more than one-third of proven reserves of fossil fuels can be consumed prior to 2050 if the world is to achieve the 2°C goal.

“Will coal remain a fuel of choice?” Coal has met nearly half of the rise in global energy demand over the last decade, growing faster even than total renewables. Whether coal demand carries on rising strongly or changes course will depend on the strength of policy measures that favour lower-emissions energy sources, the deployment of more efficient coal-burning technologies and, especially important in the longer term, CCS. The policy decisions carrying the most weight for the global coal balance will be taken in Beijing and New Delhi – China and India account for almost three-quarters of projected non-OECD coal demand growth (OECD coal use declines).

China makes a major contribution to the increase in primary demand for all fuels: oil (54%), coal (49%), natural gas (27%), nuclear power (57%) and renewables (14%). Its reliance on coal declines from 66% of the country’s primary energy use in 2010 to 51% in 2035. Energy use in India, which recently overtook Russia to become the world’s third-largest energy consumer, more than doubles over the Outlook period. India makes the second-largest contribution to the increase in global demand after China. Chart: IEA, WEO-2012

“If nuclear falls back, what takes its place?” The anticipated role of nuclear power has been scaled back as countries have reviewed policies in the wake of the 2011 accident at the Fukushima Daiichi nuclear power station. Japan and France have recently joined the countries with intentions to reduce their use of nuclear power, while its competitiveness in the United States and Canada is being challenged by relatively cheap natural gas. The report’s projections for growth in installed nuclear capacity are lower than in last year’s Outlook and, while nuclear output still grows in absolute terms (driven by expanded generation in China, Korea, India and Russia), its share in the global electricity mix falls slightly over time.

“A continuing focus on the goal of universal energy access.” Despite progress in the past year, nearly 1.3 billion people remain without access to electricity and 2.6 billion do not have access to clean cooking facilities. Ten countries – four in developing Asia and six in sub-Saharan Africa – account for two-thirds of those people without electricity and just three countries – India, China and Bangladesh – account for more than half of those without clean cooking facilities. The report presents an Energy Development Index (EDI) for 80 countries, to aid policy makers in tracking progress towards providing modern energy access. The EDI is a composite index that measures a country’s energy development at the household and community level.

“Energy is becoming a thirstier resource.” Water needs for energy production are set to grow at twice the rate of energy demand. The report estimates that water withdrawals for energy production in 2010 were 583 billion cubic metres (bcm). Of that, water consumption – the volume withdrawn but not returned to its source – was 66 bcm. The projected rise in water consumption of 85% over the period to 2035 reflects a move towards more water-intensive power generation and expanding output of biofuels.

Such is the barest glimpse of the WEO-2012. There are a number of aspects of the Outlook which deserve more scrutiny with a view to learning energy use and misuse, and this will be expanded upon in the weeks ahead.

What ails the South Asian monsoon?

leave a comment »

Rainfall in India’s meteorological sub-divisions for the 2012 monsoon. The India Meteorological Department (IMD) has finally admitted that this year will be a drought, as it has forecast rainfall for August and September as “below normal”. Map: IMD

This set of images helps explain the worrying 2012 monsoon season in South Asia and why drought conditions are emerging in more districts with every passing week.

We are coming up to the eight-week mark of the 2012 monsoon (taking the 04-06 June date as the ‘normal’ for the monsoon to become active over south-west India, after which the climatological system slowly advances over the peninsula and up into northern India).

The Indian Meteorological Department (IMD) has not helped, by maintaining a scientific detachment between forecasting science and the dire situation of farmers and consumers. With emergency drought programmes new being rolled out in many states (more than a month late), the IMD’s refusal to speak plainly to those who need the information the most is unpardonable.

Worse, the Department on its website and its communications walls off its forecasting behind a very unfriendly science interface (see this commentary for a detailed explanation), and appears oblivious about its responsibilities to those for whom it exists – the citizens of India who are waiting for rain.

This set of images (strips below, you can click on the images for the full-size versions) describes what the IMD ought to be disseminating (but stubbornly refuses to). These are 24, 48, 72 and 96 hour regional forecasts for South Asia of accumulated precipitation and temperature extremes.

Day 1 – 02 Aug 2012

Day 2 – 03 Aug 2012

Day 3 – 04 Aug 2012

Day 4 – 05 Aug 2012

The four regions you see in the panels are Peninsular India and Sri Lanka, Western India and Pakistan, Northern & Central India and Nepal, and Eastern India and Bangladesh. These are from the monsoon forecasting sub-site of the Center for Ocean-Land-Atmosphere Studies – of the Institute of Global Environment and Society (IGES) – which processes and synthesises data from the NOAA/NCEP, which is the National Oceanic and Atmospheric Administration (NOAA, the US government agency), National Centers for Environmental Prediction. These regional weather forecasts are presented as a running four-day ensemble of images showing daily forecasts of 2-metre temperature minima and maxima and accumulated precipitation covering the four sub-regions.

USA climate, the newer, higher, normals

leave a comment »

In July 2011, the US National National Oceanic and Atmospheric Administration‘s (NOAA) National Climatic Data Center updated the Climate Normals for the USA.These are three-decade averages of weather observations, including temperature. The new annual normal temperatures for the United States reflect a warming world.

July Maximums, 1981–2010 compared to 1971–2000 image

Following procedures set by the World Meteorological Organization, normals shift each decade, rather than each year. As of July 2011, the climate normals span 1981–2010, dropping the 1970s, which were unusually cool. Last year, the normals included 1971–2000, leaving out the warmest decade on record (2001–2010).

NASA’s Earth Observatory has provided maps which show the differences between the old normals and the new normals. The top image shows July maximum temperatures, and the lower image shows the January minimum temperatures.

Positive temperature changes appear in orange and red, and negative temperature changes appear in blue.

January Minimums, 1981–2010 compared to 1971–2000 image

On average, the contiguous United States experiences the lowest temperatures on January nights, and the highest temperatures on July days. Both January minimum temperatures and July maximum temperatures changed, but not by equal amounts.

Parts of the Great Plains, Mississippi Valley, and the Northeast experienced slightly cooler July maximums from 1981–2010 compared to 1971–2000 (top map).

A much more striking difference, however, appears in the January minimums (lower map). Nighttime temperatures in January were higher everywhere except the Southeast. Warmer nights were especially pronounced in the northern plains through the northern Rocky Mountains—several degrees warmer in some places.

Comparing average temperatures year round, every state experienced warmer temperatures in 1981–2010 compared to 1971–2000.

NOAA’s National Climatic Data Center (NCDC) released the 1981-2010 Normals on July 1, 2011. Climate Normals are the latest three-decade averages of climatological variables, including temperature and precipitation. This new product replaces the 1971-2000 Normals product. Additional Normals products; such as frost/freeze dates, growing degree days, population-weighting heating and cooling degree days, and climate division and gridded normals; will be provided in a supplemental release by the end of 2011.

Although warmer temperatures can have benefits, they pose hazards to some plants. For instance, higher nighttime temperatures enable some pests—such as the pine bark beetle and wooly adelgid—to thrive in places where they previously froze.

What are Normals? – In the strictest sense, a “normal” of a particular variable (e.g., temperature) is defined as the 30-year average. For example, the minimum temperature normal in January for a station in Chicago, Illinois, would be computed by taking the average of the 30 January values of monthly-averaged minimum temperatures from 1981 to 2010. Each of the 30 monthly values was in turn derived from averaging the daily observations of minimum temperature for the station. In practice, however, much more goes into NCDC’s Normals product than simple 30-year averages. Procedures are put in place to deal with missing and suspect data values. In addition, Normals include quantities other than averages such as degree days, probabilities, standard deviations, etc. Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States.

What are Normals used for? – Meteorologists and climatologists regularly use Normals for placing recent climate conditions into a historical context. NOAA’s Normals are commonly seen on local weather news segments for comparisons with the day’s weather conditions. In addition to weather and climate comparisons, Normals are utilized in seemingly countless applications across a variety of sectors. These include: regulation of power companies, energy load forecasting, crop selection and planting times, construction planning, building design, and many others.

The National Climatic Data Center compiles climate normals from observations from thousands of stations in the National Weather Service (NWS) Cooperative Observer Program, as well as stations staffed by professionals within the NWS, the National Oceanic and Atmospheric Administration (NOAA), and the Federal Aviation Administration.

India lowers its 2011 monsoon forecast

with 2 comments

India’s meteorological department has issued its second long range forecast for the 2011 monsoon and has lowered its estimate. Rainfall will be 95% of the 50-year average in the June-September season, which are the monsoon months. In April, the Indian Meteorological Department predicted a monsoon that would be 98% of the long-term average. Normal precipitation is considered to be 96%-104% percent of the long-term average.

India’s agriculture-dependent population has been hoping for adequate rainfall to harvest good quantities of foodgrain and lentils for a second year and bring down inflation, which has led the Reserve Bank of India – the central bank – to raise rates for a 10th time in 15 months. Agriculture accounts for 14% of the economy and a reduced harvest can further lower rural incomes and send food inflation higher than it already is. Inflation in India is the highest among Asia’s major economies.

Bloomberg reported that the wholesale price index in India accelerated 9.06% in May after having increased 8.66% a month earlier, according to official data released on June 14. An index measuring wholesale prices of farm products including milk and lentils rose 8.96% in the week ended June 4 from a year earlier, according to the commerce ministry. India imported record quantities of sugar, lentils and oilseeds in 2009 following the weakest monsoon that year since 1972.

The IMD’s ‘long period’ is 1951-2000 and the department considers probabilities for the country (all-India) and four major regions: north-west India, central India, north-east India and south peninsula. “Over the four broad geographical regions of the country, rainfall for the 2011 Southwest Monsoon Season is likely to be 97% of its LPA over North-West India, 95% of its LPA over North-East India, 95% of its LPA over Central India and 94% of its LPA over South Peninsula, all with a model error of ± 8 %.”

The IMD also employs a six-parameter statistical forecasting system to prepare probability forecasts for five pre-defined rainfall categories. These are deficient (less than 90% of LPA), below normal (90-96% of LPA), normal (96-104% of LPA), above normal (104-110% of LPA) and excess (above 110% of LPA). The forecasted probabilities for the 2011 southwest monsoon season based on this system in percentage for the above 5 categories are 19%, 37%, 37%, 6% and 1%

The department’s ‘Summary of the Update Forecasts for 2011 Southwest Monsoon Rainfall’ has said:

(1) Rainfall over the country as a whole for the 2011 southwest monsoon season (June to September) is most likely to be below normal (90-96% of LPA). Quantitatively, monsoon season rainfall for the country as a whole is likely to be 95% of the long period average with a model error of ±4%. The Long period average rainfall over the country as a whole for the period 1951-2000 is 89 cm.

(2) Rainfall over the country as a whole in the month of July 2011 is likely to be 93% of its LPA and that in the month of August is likely to be 94% of LPA both with a model error of ± 9 %.

(3) Over the four broad geographical regions of the country, rainfall for the 2011 Southwest Monsoon Season is likely to be 97% of its LPA over North-West India, 95% of its LPA over North-East India, 95% of its LPA over Central India and 94% of its LPA over South Peninsula, all with a model error of ± 8 %.

According to Reuters, government officials played down concerns that lower rainfall could fan inflation and dampen growth. “There is no need to press the panic button, as June rains are still above normal,” said Shailesh Nayak, the top civil servant in the ministry of earth sciences which controls the country’s weather office.

While rains could be slightly lower than normal in July, India’s chief forecaster said distribution was key. “There are chances the monsoon will pick up after July 15 once it covers the entire country,” said D. Sivananda Pai, director at the state-run National Climate Center. “Don’t go by the numbers, it is the distribution (of the rains) which we are still hoping to be good.” The weather office predicted 27 centimetres of rain in July compared with long-term average rainfall of 29 centimetres, and rains at 24 centimetres in August, when seeds start maturing, compared with long-term averages of 26 centimetres.

Weather office chief Ajit Tyagi remained optimistic. “Ninety five percent is a good forecast,” Tyagi said. “Had it been 90% of the long-term average then it would have been a cause for concern,” he said, adding that in the past slightly below normal monsoon rains had also seen adequate farm output because they were well distributed in the major crop growing regions.

Explaining climatic conditions over the equatorial Pacific and Indian Oceans, the department’s second long range said moderate to strong La Nina conditions that prevailed in the equatorial Pacific during mid-August 2010 to early February 2011 weakened during subsequent months and dissipated to neutral conditions around mid-May 2011. The latest forecasts from a majority of the dynamical and statistical models indicate strong probability for the present ENSO-neutral conditions to continue during the current monsoon season and the remaining part of 2011.

It is important to note that in addition to El Niño and La Niña events, other factors such as the Indian Ocean Sea surface temperatures (SSTs) have also significant influence on India monsoon. However, the latest forecasts do not suggest development of either a positive or a negative Indian Ocean Dipole event during the 2011 monsoon season. In the absence of strong monsoon forcing from both Pacific and Indian Oceans, intraseasonal variation may become more crucial during this southwest monsoon season and lead to increased uncertainty in the monsoon forecasts.

Asia worries about food stocks and prices

leave a comment »

Protesters scramble for food and drink being distributed during mass demonstrations at Cairo's Tahrir Square in early February. Photo: Reuters/RFERL

Protesters scramble for food and drink being distributed during mass demonstrations at Cairo's Tahrir Square in early February. Photo: Reuters/RFERL

Bangladesh, South Asia’s biggest rice buyer, is in talks with India to buy grains on a regular basis to bolster food security as governments seek to avoid a repeat of the unrest that broke out when prices last soared, reported Bloomberg.

A long-term agreement will protect Bangladesh from possible defaults by private traders, who sometimes fail to meet their commitments if prices gain, Muhammad Abdur Razzaque, the nation’s food minister, said in an interview yesterday. “Rice prices rose this year in our country; people are suffering as they have limited income,” Razzaque said by phone from Dhaka.

Bangladesh’s plan underscores a drive by governments to strengthen their reserves to help manage the impact of food prices that advanced to a record last month, beating the jump in 2008 that spawned riots from Haiti to Egypt. This year’s surge has driven millions into extreme poverty, according to the World Bank, and contributed to unrest in the Middle East and Africa. “When we go for international tenders and prices suddenly rise, private suppliers sometimes fail to fulfill their commitments,” Razzaque said. “They don’t supply us and put us in trouble. It has happened.”

In the Philippines, Sen. Francis Pangilinan, chairman of the Senate committee on agriculture, has called on the country’s Department of Agriculture (DA) and the Department of Trade and Industry (DTI) to start preparing for the worst-case scenario as far as the prices of oil and other basic commodities are concerned in response to the volatile situation in the Middle East.

The Philippine Star quoted Pangilinan as having said that other nations have started preparing for an expected food and oil shortage, not only because of the turmoil in the Middle East but also because of the erratic weather patterns that the world has been experiencing. “Some Asian governments have already started to come up with measures to mitigate rising prices. Erratic weather patterns have started wreaking havoc on our agricultural lands. China and India are stockpiling on grains, which means we need to rely less on importation to secure our buffer. The price of oil continues to soar, it is a matter that requires our serious attention,” he said.

In today’s world of interlinked markets, a problem in one place quickly ripples out to others. Croplands in Russia, one of the world’s leading wheat producers, were devastated by fires during last summer’s record-breaking heat wave. Wheat harvests in Ukraine, also plagued by torrid weather, dropped 15 percent last year, a comment in Radio Free Europe/Radio Liberty reminded readers.

Both countries responded by introducing export bans that have exacerbated global shortages of the commodity. Partly as a result, world wheat prices doubled between June 2010 and January 2011. According to the World Bank, wheat prices have risen in the past six months by 54 percent in Kyrgyzstan, 45 percent in Bangladesh, and 33 percent in Mongolia.

In the oil-rich Caucasus republic of Azerbaijan, high prices have been sending citizens across the border into neighboring Georgia, where they are buying up meat, potatoes, onions, and apples. Nadeem Ilahi, head of an International Monetary Fund (IMF) delegation visiting Baku this week, warned that Azerbaijanis should expect overall prices to rise 10 percent in the course of this year — most of it due to the worldwide rise in the cost of food.

Written by makanaka

February 26, 2011 at 22:40

How June 2010 blazed new climate records, and the story of Rongbuk glacier

leave a comment »

NOAA, National Climatic Data Center, State of the Climate, Global Analysis, June 2010It’s been another searing half year from January 2010 to June. Global temperature records have been surpassed all over the place. Both land and sea temperatures have climbed upwards to match previous highs, and in some places to top them. Here are the global highlights for June 2010 from the National Oceanic and Atmospheric Administration’s (NOAA), National Climatic Data Center, State of the Climate, Global Analysis, June 2010:

* The combined global land and ocean average surface temperature for June 2010 was the warmest on record at 16.2°C (61.1°F), which is 0.68°C (1.22°F) above the 20th century average of 15.5°C (59.9°F). The previous record for June was set in 2005.
* June 2010 was the fourth consecutive warmest month on record (March, April, and May 2010 were also the warmest on record). This was the 304th consecutive month with a global temperature above the 20th century average. The last month with below-average temperature was February 1985.
NOAA, National Climatic Data Center, State of the Climate, Global Analysis, June 2010* The June worldwide averaged land surface temperature was 1.07°C (1.93°F) above the 20th century average of 13.3°C (55.9°F)—the warmest on record.
* It was the warmest April–June (three-month period) on record for the global land and ocean temperature and the land-only temperature. The three-month period was the second warmest for the world’s oceans, behind 1998.
* It was the warmest June and April–June on record for the Northern Hemisphere as a whole and all land areas of the Northern Hemisphere.
* It was the warmest January–June on record for the global land and ocean temperature. The worldwide land on average had its second warmest January–June, behind 2007. The worldwide averaged ocean temperature was the second warmest January–June, behind 1998.
* Sea surface temperature (SST) anomalies in the central and eastern equatorial Pacific Ocean continued to decrease during June 2010. According to NOAA’s Climate Prediction Center, La Niña conditions are likely to develop during the Northern Hemisphere summer 2010.

NOAA, National Climatic Data Center, State of the Climate, Global Analysis, June 2010The ‘State of the Climate, Global Analysis’ for June 2010 said that warmer-than-average conditions dominated the globe during the month, with the most prominent warmth in Mexico, northern Africa, and most of Europe, Asia, South America, and the USA. The world land surface temperature June 2010 anomaly of 1.07°C (1.93°F) was the warmest on record, surpassing the previous June record set in 2005 by 0.12°C (0.22°F).

The warm conditions that affected large portions of each inhabited continent also contributed to the warmest June worldwide land and ocean surface temperature since records began in 1880. The previous June record was set in 2005. Separately, the worldwide ocean surface temperatures during June 2010 were 0.54°C (0.97°F) above the 20th century average—the fourth warmest June on record. Warmer-than-average conditions were present across most of the Atlantic, Indian, and the western Pacific oceans.

NOAA, National Climatic Data Center, State of the Climate, Global Analysis, June 2010“June 2010 was the fourth consecutive month with reported warmest averaged global land and ocean temperature on record (March, April, and May 2010 were also the warmest on record),” said the Global Analysis for the month. “When averaging the last three months, the combined global land and ocean surface temperature during April–June 2010 (three-month period) ranked as the warmest April–June on record, with an anomaly of 0.70°C (1.26°F) above the 20th century average. The previous April–June record was set in 1998, which had an anomaly of 0.66°C (1.19°F) above the 20th century average.”

The areas with the wettest anomalies during June 2010 included southern India, southern China, southern Europe, the midwestern USA, and parts of northwestern South America. The driest anomalies were present across northern India and across parts eastern Asia, northeastern South America, and Australia. There was climate havoc in China. According to the Beijing Climate Center (BCC), the provinces of Guizhou, Fujian, and Qinghai had above-average precipitation during June 2010, ranking as the second wettest June since national records began in 1951.

The BCC also reported that ten provinces in southern China were affected by storms that brought heavy rainfall across the area—resulting in record breaking daily rainfall in some places of Jiangxi and Fujian. The copious rainfall prompted floods that killed nearly 200 people. Meanwhile, the province of Jiangsu had its driest June on record, while Shanxi had its second driest on record. Overall, the monthly averaged precipitation in China during June 2010, 95.0 mm (3.7 inches), was near the 1971–2000 average.

Asia Society-The 1921 photograph taken by George Mallory of the Rongbuk Glacier and the northern slope of Mount Everest in the distance, Tibet Autonomous Region

Asia Society-The 1921 photograph taken by George Mallory of the Rongbuk Glacier and the northern slope of Mount Everest in the distance, Tibet Autonomous Region

The impact of a succession of record warm Junes is described in photographic detail by an eye-opening exhibit of the Asia Society. (The Telegraph of Britain had an early report on the startling photos.) The two pictures show an alarming retreat in ice over more than 80 years.

The first was taken in 1921 by British mountaineer George Mallory. The Asia Society commissioned the same picture to be taken of the main Rongbuk glacier on the northern slope of Mount Everest in Tibet in 2007.

The new picture by mountaineer David Breashears show that the glacier is shrunk and withered. Breashears retraced the steps of the 1921 British Mount Everest Reconnaissance Expedition Team, using photos taken then by surveyor and photographer Maj Edward Wheeler and amateur photographer George Mallory, who later died attempting to reach the Everest summit in 1924.

Asia Society-The 2007 photograph taken by David Breashears of the Rongbuk Glacier taken from the same place as Mallory's 1921 photograph

Asia Society-The 2007 photograph taken by David Breashears of the Rongbuk Glacier taken from the same place as Mallory's 1921 photograph

The Himalayan glaciers are melting at an alarming rate, as is starkly documented in photographic comparisons between archival images and recent photographs taken by mountaineer David Breashears in the new Asia Society Museum exhibition Rivers of Ice: Vanishing Glaciers in the Greater Himalaya. “That melting also has a profound impact on the local communities the Himalayan glaciers serve, and has emerged as a primary bellwether of global climate change,” said the Asia Society.

The surface area of glaciers in these high altitude valleys is often covered by layers of debris or snow. To determine the full measure of loss in the ice mass in these photos, look not only at how far the glaciers have receded, but at the surrounding valley walls. In many cases, the loss in depth is upwards of 300 vertical feet.

‘Do or die’ year for agriculture

leave a comment »

“If we don’t take steps to address the serious ecological, economic and social crises facing our farm families, we will be forced to support foreign farmers, through extensive food imports.”
“This will result in a rise in food inflation, increase the rural-urban and rich-poor divides and allow the era of farmers’ suicides to persist.”
“On the other hand, we have a unique opportunity for ensuring food for all by mobilizing the power of Yuva and Mahila Kisans and by harnessing the vast untapped yield reservoir existing in most farming systems through synergy between technology and public policy.”
“2010 is a do or die year for Indian agriculture.”

An increased number of residents of the terai are now food insecure as a result of unusually heavy rains earlier this month

An increased number of residents of the terai are now food insecure as a result of unusually heavy rains earlier this month

So says Prof M S Swaminathan, India’s best-known agriculture scientist, who established the M S Swaminathan Research Foundation in 1988. Chastened by the limitations of the ‘green revolution’, the MSSRF’s mission is the conservation and enhancement of natural resources, and generation of agricultural, rural and off-farm employment with a particular emphasis on the poor and the women.

Swaminathan made these points in a blunt, hard-hitting and no-nonsense convocation address at the Punjab Agricultural University in Ludhiana on 10 February 2010. The content of his address should have attracted national attention, because of the urgency of his tone and also because of the specific, very feasible institutional transformations his suggestions will need. He talked about adaptation to climate change and explained that a group of scientists led by the MSSRF have undertaken studies during the last five years in Rajasthan and Andhra Pradesh on climate change adaptation measures. The districts chosen were Udaipur in Rajasthan and Mehabubnagar in Andhra Pradesh. The approach adopted was to bring about a blend of traditional wisdom and modern science through farmer participatory research.

MSS mentioned five particular points of adaptation:
1. Water conservation and sustainable and equitable use
2. Promoting fodder security
3. More crop and income per drop of water
4. Weather information for all and climate literacy
5. Strengthening community institutions

He said these interventions were supported by training and skill development and education and social mobilization. A training manual was prepared by MSSRF for training one woman and one male member of every Panchayat as Climate Risk Managers. Such local level Climate Risk Managers will be well trained in the art and science of managing weather abnormalities. The work has highlighted the need for location specific adaptation measures and for participatory research and knowledge management.

“The adaptation interventions have also highlighted the need for mainstreaming gender considerations in all interventions. Women will suffer more from Climate Change, since they have been traditionally in charge of collecting water, fodder and fuel wood, and have been shouldering the responsibility for farm animal care and post-harvest technology. All interventions should therefore be pro-nature, pro-poor and pro-women.”

Sujit Kumar Mondal and his wife Rupashi Mondal of Gopalgonj district in southern Bangladesh working in their floating garden.

Sujit Kumar Mondal and his wife Rupashi Mondal of Gopalgonj district in southern Bangladesh working in their floating garden.

“It is clear that to promote location specific and farmer-centric adaptation measures; India will need a Climate Risk Management Research and Extension Centre at each of the 127 agro-ecological regions in the country. Such centres should prepare Drought, Flood and Good Weather Codes what can help to minimize the adverse impact of abnormal weather and to maximize the benefits of favourable monsoons and temperature. Risk surveillance and early warning should be the other responsibilities of such centres. Thus the work done so far has laid the foundation for a Climate Resilient Agriculture Movement in India. The importance of such a Movement will be obvious considering the fact that 60% of India’s population of 1.1 billion depend upon agriculture for their livelihood. In addition, India has to produce food, feed and fodder for over 1.1 billion human, and over a billion farm animal population.”

It is a shared responsibility, said MSS, and one that the non-farming, urban population must recognise and help bear. “Urban and non-farming members of the human family should realize that we live on this planet as the guests of sunlight and green plants, and of the farm women and men who toil in sun and rain, and day and night, to produce food for over 6 billion people, by bringing about synergy between green plants and sunlight. Let us salute the farmers of the world and help them to help in achieving the goal of a hunger free world, the first among the U N Millennium Development Goals.”

These points are made at a time when India (or rather the central government and key ministries) still places economic growth as a priority rather than ecologically sustainable existence which is mindful of cultural traditions and which builds on extensive systems of traditional knowledge to take a human development route that is climate neutral. From 2007 onwards, there have been major intergovernmental and international studies on the impacts of climate change (including on agriculture). Several of these have shown that in South and East Asia, rice yields are affected. For most crops and regions, carbon fertilisation accentuates the positive impacts and mitigates the negative ones. However, there is considerable uncertainty about the true impact of carbon fertilisation. Among developing countries, the number of countries which ‘lose’ exceed the number of countries that ‘gain’, and their decrease in cereal production was greater than gains elsewhere.

Developing countries are worse off, where agriculture is concerned, said an OECD study in 2008 titled ‘Costs of Inaction on Key Environmental Challenges’. For example, the scenario with the highest CO2 concentration showed a 7% decline for developing countries. For developed countries, yields actually increased under all scenarios, but the global effect was always negative, or (at best) neutral. Not only was there significant variation across countries; the implications for the risk of hunger also varied greatly, depending on assumptions made about the fertilising effects of increasing CO2 concentrations.

“Assuming ‘no action’ is taken with respect to emissions, positive changes in yields (due to warming, precipitation, and crop fertilisation) in mid and high latitudes were predicted to be more than compensated by reductions in the lower latitudes, particularly in Africa and the Indian sub-continent. Changing crop yields (and demands) will affect market prices for agricultural output, as well as land prices. Decreases in agricultural yields in developing countries are likely to have significant implications for risk of hunger.”

Moreover, there has been evidence enough of the links between reducing poverty and strengthening agriculture. A paper produced by DFID (the British official aid agency, in 2004) emphasises the historically close correlation between different rates of poverty reduction over the past 40 years and differences in agricultural performance – particularly the rate of growth of agricultural productivity. There are links described between agriculture and poverty reduction through four ‘transmission mechanisms’: 1) direct impact of improved agricultural performance on rural incomes; 2) impact of cheaper food for both urban and rural poor; 3) agriculture’s contribution to growth and the generation of economic opportunity in the non-farm sector; and 4) agriculture’s fundamental role in stimulating and sustaining economic transition, as countries (and poor people’s livelihoods) shift away from being primarily agricultural towards a broader base of manufacturing and services.

Why is this so important to India and so important now? An ADB paper explains (‘A General Equilibrium Analysis of the Impact of Climate Change on Agriculture in the People’s Republic of China’, by Fan Zhai, Tun Lin, and Enerelt Byambadorj, Asian Development Bank, 2010). Despite rapid growth in recent decades, the People’s Republic of China (PRC) is no exception to the effects of climate change. It also faces a great challenge to meet increasing demand for agricultural products due to increasing population and income level in the coming years. In the PRC, agriculture accounted for 11.7% of the national gross domestic product (GDP) in 2006 and agricultural crop land occupied 157 million hectares. Agricultural production has enabled the country to feed a population of 1.3 billion people, more than a fifth of the world’s population, of whom 900 million live in rural areas, from an eighth of the world’s arable land.

“Global climate change could cause rises in temperature, redistribution of rainfall, and more frequent flooding and droughts, and do considerable damage to crop production and the agricultural sector in general,” says the ADB paper. “At the national level, overall impact on crop production, assuming there is no carbon dioxide (CO2) fertilisation, is an estimated 7 to 14% reduction in rice, 9 to 10% reduction in maize, and 2 to 9% reduction in wheat. Assuming an average drop of 7%, this means a reduction of almost 40 million metric tons of food grain, and 20% of the global grain trade. Such a loss would undermine food security in the PRC, with particular health consequences for the poor and women, as females are primarily responsible for feeding the family.”

The advance guard of climate change

leave a comment »

Winter sky over the Deccan plateau, India

Winter sky over the Deccan plateau, India

From late 2003 to early 2005 I was part of a small group in south Nagaland (in India’s north-east region) conducting a study on natural resource management and the prospects for tourism in the region. The study was funded by a Indian central government ministry, was ‘supervised’ by the state government and was made possible by the village community of Khonoma, in the Naga hills.

At around the mid-point of our study, when the time had come for the paddy seedlings to be transplanted, that the convergence of climate change and scarce labour resources became obvious. The seedlings were not ready to be moved at the time of year they were usually expected to be. By the time they were, the extra labour each rice farming family had mobilised in preparation for the hard work ahead, had their regular jobs and occupations to return to. The hill villages were in turmoil. Practically every single family that had a plot of terraced rice field to attend to was caught in a dilemma.

If they insisted that those who had come to the villages to help them – daughters, sons, cousins or aunts – stay back to complete the work, those helpful souls would certainly lose salaries and wages. If they let them return, they would have to look for very scarce hired labour, whose per day wage was high and which would certainly rise given the scarcity of hands available and time. It was for most families a Hobson’s choice, and by either reckoning only made the socio-economic cost of rice cultivation dearer. This was the most dramatic impact of climate change that I saw at the time, for the shift in transplanting season was considered very odd indeed by the villages, almost unprecedented.

Extracting riverbed sand in North Goa, India

Extracting riverbed sand in North Goa, India

We know now that local observations of direct effects of climate change by tribal populations and indigenous peoples corroborate scientific predictions. In a very real sense, indigenous peoples are the advance guard of climate change. They observe and experience climate and environmental changes first-hand, and are already using their traditional knowledge and survival skills – the heart of their cultural resilience – to respond. Moreover, they are doing this at a time when their cultures and livelihoods are already undergoing significant stresses not only due to the environmental changes from climate change, but from the localised pressures and economic impulses of global trade and movement of capital.

The United Nations University’s Institute of Advanced Study has just released an advance copy of what promises to be a goldmine of such observation. The volume is entitled ‘Advance Guard: Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples – A Compendium of Case Studies’. The 402 case studies summarised in this densely packed volume mention a host of specific vulnerabilities and early effects of climate change being reported by indigenous peoples (and these include cultural and spiritual impacts): demographic changes, including displacement from their traditional lands and territories; economic impacts and loss of livelihoods; land and natural resource degradation; impacts on food security and food sovereignty; health issues; water shortages; and loss of traditional knowledge.

: Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples

The cover graphic of the UNU-IAS compilation 'Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples'

Impacts are felt across all sectors, including agriculture and food security; biodiversity and natural ecosystems; animal husbandry (particularly pastoralist lifestyles); housing, infrastructure and human settlements; forests; transport; energy consumption and production; and human rights. The entire range of effects on habitats and their biomes are supplied: temperature and precipitation changes; coastal erosion; permafrost degradation; changes in wildlife, pest and vector-borne disease distribution; sea-level rise; increasing soil erosion, avalanches and landslides; more frequent extreme weather events, such as intense storms; changing weather patterns, including increasing aridity and drought, fire and flood patterns; and increased melting of sea-ice and ice-capped mountains.

“In spite of these impacts,” states the UNU-IAS compilation, “indigenous peoples also have a variety of successful adaptive and mitigation strategies to share. The majority of these are based in some way on their traditional ecological knowledge, whether they involve modifying existing practices or restructuring their relationships with the environment. Their strategies include application and modification of traditional knowledge; shifting resource bases; altering land use and settlement patterns; blending of traditional knowledge and modern technologies; fire management practices; changes in hunting and gathering periods and crop diversification; management of ecosystem services; awareness raising and education, including use of multimedia and social networks; and policy, planning and strategy development.”

From Asia, I’ve picked out three cases which illustrate just how important it is to observe and learn from these responses:

BANGLADESH | Indigenous forecasting in Maheshkhali, using meteorological indicators and animal behaviour to predict cyclones. Maheshkhali Island is situated off the Bay of Bengal coast with an area of approximately 60 square km. Cyclones are the greatest disaster threat of coastal people. Research has revealed that certain indigenous prediction capacity possessed by the local people always helped them to anticipate cyclones and take necessary precautions. The indigenous cyclone prediction is even more important as it was revealed during interviews with the Maheskhali islanders that they do not understand the modern warning system with its different numerical codes (1-10) and elaboration on wind direction, as explained in the warning bulletins.

Buffalo at work, Kolhapur district, Maharashtra, India

Buffalo at work, Kolhapur district, Maharashtra, India

INDIA | Indigenous forecasting in India using meteorological indicators, plant features and animal behaviour. Researchers from Gujarat Agricultural University have evaluated eight indigenous forecasting beliefs between 1990 to 1998. For each year, the data was tabulated and analysed on the basis of Bhadli’s criteria. Based on the findings the researchers concluded that many of the beliefs are reliable indicators of monsoon. The study has helped to restore the people’s confidence in their own traditional knowledge and skills. As climate change occurs, these traditional forecasting indicators may change. Locals have to continue their observations and adjust their predictions accordingly to ensure that correct coping mechanisms will be applied.

INDONESIA | Customary Iban Community. This study examines the social and institutional practices of a sedentary Iban sub-tribe in the upstream part of the Kapuas system in governing their life. In 2008, the Sungai Utik community acquired a formal, recognition of their institutional capacity to live at the center of one of the most complex ecosystems that is the tropical rainforest of Kalimantan. The Indonesian Eco-label Institute provided the community logging practice of the Sungai Utik Ibans its “seal of ecological appropriateness”. The Sungai Utik life-space is part of the bigger climatic zone just north of the Equator that has been predicted to experience higher precipitation over the course of climate change in this century, particularly in comparison with the last three decades of the last century. It means that the community should learn to adapt to a transformed rainy season—the duration of which and the timing of its start and ending are also subject to change—for the crucial nugal (planting) rituals.


Get every new post delivered to your Inbox.

Join 327 other followers